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ABSTRACT: Next-generation sequencing has transformed
the ability to link genotypes to phenotypes and facilitates the
dissection of genetic contribution to complex traits. However,
it is challenging to link genetic variants with the perturbed
functional effects on proteins encoded by such genes. Here we
show how RNA sequencing can be exploited to construct
genotype-specific protein sequence databases to assess natural
variation in proteins, providing information about the
molecular toolbox driving cellular processes. For this study,
we used two natural genotypes selected from a recent genome-
wide association study of Populus trichocarpa, an obligate
outcrosser with tremendous phenotypic variation across the
natural population. This strategy allowed us to comprehen-
sively catalogue proteins containing single amino acid polymorphisms (SAAPs), as well as insertions and deletions. We profiled
the frequency of 128 types of naturally occurring amino acid substitutions, including both expected (neutral) and unexpected
(non-neutral) SAAPs, with a subset occurring in regions of the genome having strong polymorphism patterns consistent with
recent positive and/or divergent selection. By zeroing in on the molecular signatures of these important regions that might have
previously been uncharacterized, we now provide a high-resolution molecular inventory that should improve accessibility and
subsequent identification of natural protein variants in future genotype-to-phenotype studies.
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■ INTRODUCTION

With the widespread availability of next-generation sequencing
technologies (e.g., Illumina and Moleculo), researchers now
have the tools to rapidly scan millions of single-nucleotide
variants (SNVs) across thousands of genomes to find genetic
variants associated with a particular phenotype. Over the past
decade, such genome-wide association (GWA) studies have
become increasingly popular in human and plant genetics.1−3

Studies assessing natural variation across humans are gradually
unraveling the genetic mechanisms underlying human traits,
diseases, and behaviors.4,5 This is also clearly an exciting time
for plant research, where GWA studies are uncovering the
genetic basis of various agronomical traits and thereby
providing a means to increase crop quality and yield.6,7

With advances in sequencing output and computational data
analysis, it has become much easier for researchers to exploit
GWA data sets (i.e., SNV genotyping and trait measurements)
to rapidly discover millions of SNVs within a genome.8

However, the current challenge today is not discovering these

genetic variations but rather understanding how the identified
SNVs affect protein function and, even more challenging, how
theses altered proteins collectively affect phenotype. Therefore,
missing from many studies are the investigations of how
variation in local genome structure relates to the cellular
phenotypes.
With the availability of RNA sequencing (RNA-seq), whole-

transcriptome studies are now capable of creating rich and
abundant gene expression libraries, along with information on
splice variants across a dynamic range of quantification.9

Although identifying the transcribed portion of the genome
reveals which genes have been expressed, there are many post-
transcriptional regulatory mechanisms occurring after mRNAs
are manufactured that influence production and maintenance of
their subsequent protein products. As such, these types of
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investigations would benefit tremendously by pairing tran-
scriptome with proteome analyses.
At present, the evolving field of proteomics continues to

provide accurate insights on the diversity and complexity of
phenotypes.10 Among the different methods used for proteomic
studies, shotgun proteomics has become a vital tool for the
high-throughput characterization of proteins in biological
samples.11−15 Although shotgun proteomics enables exquisite
high-resolution peptide sequencing, fundamentally, this inter-
rogation relies heavily on the availability of a high-quality
reference genome and thereby is biased toward well-curated,
predicted gene annotations.
The main impediment to the detection of sequence variants

using mass spectrometry has been the lack of proteomic
databases that include sample-specific variant sequences;
consequently, such investigations are often taxonomically
restricted to model organisms. This limitation prevents mass
spectrometry-based proteomic approaches from providing the
necessary information for GWA studies. To circumvent this
problem, researchers have relied on de novo search algorithms
to infer full-length peptide sequences from tandem mass
spectra without requiring a protein sequence reference
database.16−18 Although this strategy has seen moderate
success,19,20 there are several critical challenges that cannot
be simply addressed; e.g., these approaches create large
databases that increase the false positive rate and thereby
decrease peptide identification sensitivity. With the availability
of RNA-seq data, more complete, sample-specific protein
databases are becoming available. Today, RNA-seq tran-
scriptomes can be obtained using next-generation sequencers
in a rather straightforward, low cost manner. The integration of
RNA-seq to establish nucleotides sequences that are directly
translated into protein sequences and thus identifiable in
proteomic measurements appears promising.21−25

The scientific community has heavily invested in generating
-omic resources for Populus, given its scientific and economic
importance. Currently, Populus genomics resources are among
the most mature of any plant species and include (1) the first
reference genome of a perennial plant26 and (2) a repository of
more than 48 million high-quality SNVs27 and a whole-genome
resequencing initiative of 1084 genomes.28 Therefore, by
characterizing the diversity at the protein level across many
genotypes, there is a potential to identify underlying
mechanisms underpinning complex phenotypes, which could
have noteworthy implications in the bioenergy and forest
products industries.
Here, we use two individual genotypes identified in a recent

GWA study28 in the genus Populus to demonstrate how next-
generation RNA-seq data can be leveraged to generate the first
genotype-specific protein databases to identify SNVs and short
insertion and deletions (INDELs) in Populus. By exploiting
available genome resources, we also characterized the diploid
landscape of the Populus genome at the protein level and can
therefore now provide novel insights into this inherent
variation. Given this comprehensive analysis strategy, we
generated a web-based resource to help visualize the results
at the genome, transcriptome, and proteome levels.

■ MATERIALS AND METHODS

Plant Material

Two Populus trichocarpa genotypes, DENA-17-3 and VNDL-
27-4, were grown under standard greenhouse conditions as

previously outlined.29 From these trees, young leaf including
the petiole and midrib (LPI 4−6), fine roots less than 2 mm in
diameter, and young photosynthetically active stem segments
less than 5 mm in diameter were collected, immediately frozen
in liquid nitrogen, and stored at −80 °C. Tissue was harvested
from six individual trees per genotype and pooled together for
each sample type to reduce the effects of sample-to-sample
variation.

Protein Extraction and Digestion

As previously described,19 leaf, root, and stem tissues were
ground under liquid nitrogen using a mortar and pestle. For
each organ-type, a 1 g sample of ground tissue was suspended
in SDS lysis buffer (4% SDS in 100 mM of Tris-HCl), boiled
for 5 min, sonically disrupted (40% amplitude, 10 s pulse with
10 s rest, 2 min total pulse time), and boiled for an additional 5
min. Crude protein extract was precleared via centrifugation,
quantified by BCA assay (Pierce Biotechnology), and reduced
with 25 mM dithiothreitol (DTT). Three milligrams of crude
protein extract was then precipitated by trichloroacetic acid
(TCA), pelleted by centrifugation, and washed with ice-cold
acetone to remove excess SDS as previously described. Pelleted
proteins were resuspended in 250 μL of 8 M urea, 100 mM
Tris-HCl, pH 8.0 using sonic disruption to fully solubilize the
protein pellet and incubated at room temperature for 30 min.
Denatured proteins were reduced with DTT (5 mM), and
cysteines were blocked with iodoacetamide (20 mM) to
prevent reformation of disulfide bonds. Samples were digested
via two aliquots of sequencing-grade trypsin (Promega, 1:75
[w:w]) at two different sample dilutions, 4 M urea (overnight)
and subsequent 2 M urea (5 h). Following digestion, samples
were adjusted to 200 mM NaCl, 0.1% formic acid (FA) and
filtered through a 10 kDa cutoff spin column filter (Vivaspin 2,
GE Health) to remove under-digested proteins. The peptide-
enriched flow through was then quantified by BCA assay,
aliquoted, and stored at −80 °C.
LC−MS/MS

For the analysis of the proteome samples, 25 μg of each peptide
mixture was bomb-loaded onto a biphasic MudPIT back
column packed with ∼5 cm strong cation exchange (SCX)
resin followed by ∼3 cm C18 reversed phase (RP) (Luna and
Aqua, respectively, Phenomenex). Each peptide-loaded column
was first washed off-line to remove residual urea and NaCl and
then placed in-line with an in-house pulled nanoelectrospray
emitter (100 μm i.d.) packed with 15 cm of C18 RP material
and analyzed via 22-h MudPIT 2D LC−MS/MS. The three
solvent solutions used for chromatography were 5% ACN/0.1%
FA (solvent A), 70% ACN/0.1% FA (solvent B), and 500 mM
ammonium acetate/5% ACN/0.1% FA (solvent C). Ten steps
were 120 min each with the following profile: 5 min of 100%
solvent A, 2 min of x% buffer C, 3 min of 100% solvent A, a 10
min gradient from 0 to 10% solvent B, a 75 min gradient from
10 to 35% solvent B, and a 25 min gradient from 35 to 50%
solvent B. The last step was 155 min with following profile: 5
min of 100% solvent A, 5 min of x% buffer C, 5 min of 100%
solvent A, a 10 min gradient from 0 to 10% solvent B, a 75 min
gradient from 10 to 35% solvent B, a 25 min gradient from 35
to 50% solvent B, a 15 min gradient from 50 to 100% solvent B,
and 15 min of solvent A. Solvent C percentages (x) in steps 1−
11 were as follows: 5, 7, 10, 12, 15, 17, 20, 25, 35, 50, and
100%. Peptide sequencing analysis was performed with an
LTQ-Orbitrap-Velos-Pro mass spectrometer (ThermoScien-
tific). For each sample, three technical replicates were
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measured. Mass spectra were acquired in a data-dependent “top
20” mode: each survey scan was followed by MS/MS spectra of
the 20 most abundant precursor ions (3 m/z isolation window).
For peptide fragmentation, normalized collision energy of 35%
was used for CID. Each fragmented precursor ion was
dynamically excluded from targeting for 60 s. A dynamic
exclusion repeat of 1 and a mass width of 0.2 m/z were applied
to maximize peptide sequencing. All high-resolution (15000 at
m/z 400) MS1 spectra were acquired in the Orbitrap analyzer
(XCalibur version 2.1).

Peptide and Protein Identification

All experimental MS/MS spectra were compared to theoretical
tryptic peptide sequences generated from a genotype-specific
FASTA database containing the full protein complement of the
RNA-Seq-derived protein sequences for DENA-17-3 (63 241
proteins) and VNDL-27-4 (56 841 proteins) and common
contaminant proteins (i.e., porcine trypsin and human keratin).
A decoy database, consisting of the reversed sequences of the
target database, was appended in order to discern the false-
discovery rate (FDR) at the spectral level. For standard
database searching, the peptide fragmentation spectra (MS/
MS) were searched with MyriMatch algorithm v2.1.30

MyriMatch was configured to derive fully tryptic peptides
with the following parameters: unlimited missed cleavages,
parent mass tolerance of 10 ppm, a fragment mass tolerance of
0.5 m/z unit, a static modification on cysteine (carbamidome-
thylation; +57.0214 Da), an N-terminal dynamic modification
of (carbamylation; +43.0058 Da), and a dynamic modification
corresponding to an oxidation (+15.9949 Da) of methionine.
IDPicker v3.1.57331 software filtered the peptide identifications
from MyriMatch, by combining different scoring information,
to determine where to place the threshold to maximize
identifications for a 2% peptide spectrum match-level FDR. For
protein inference, database search results for each technical
replicate search were merged together, and protein identi-
fications with at least two distinct peptide identifications (i.e.,
amino acid sequence, charge state, and modifications are
unique) were considered for further analysis. Overall, the
average peptide-level FDR for each sample was <1%.

■ RESULTS AND DISCUSSION

Creating a Genotype-Specific Protein Reference Database
Using RNA Sequencing Information

Although SNV information can be leveraged from the whole-
genome resequencing of DENA-17-3 and VNDL-27-4 to
identify predicted sequence variations at the protein level, the
number of introduced variations makes it difficult to control the
FDR in the search results for these expanded databases. We
instead integrated mRNA level SNVs to identify variant protein
sequences, which are directly upstream of protein production

and closely relevant to proteomics data.32 With the availability
of a Populus RNA sequencing library containing over 0.5
million putative SNPs,33 we were able to generate genotype-
specific protein databases for the two Populus trichocarpa
genotypes, DENA-17-3 and VNDL-27-4, using customProDB,34

an R package that incorporates SNVs and short INDELs
identified from RNA-Seq data into a protein database. In brief,
TopHat235 was used to map the RNA-Seq reads to the Populus
reference genome (v3.0; 41 335 genes and 73 013 transcripts).
SAMtools were used to call variations and, since many
variations are false positive, calls were filtered on the basis of
the following criteria: (1) SNV quality above 20; (2) mapping
quality above 25; (3) coverage above 6 reads; and (4)
alternative base supported by a minimum of 3 reads. An
extensive list of all SNV and INDEL positions can be found in
Supplemental Tables 1 and 2 for DENA-27-3 and VNDL-27-4,
respectively. In general, 60% of all SNVs are located in coding
regions (Table 1). Table 2 lists the total number and the
location of INDEL positions. In both cases, we employed a
loose cutoff RPKM (reads per kilobase of transcript per million
reads mapped; an estimation of gene expression) value of 1 to
remove the transcripts with low expression levels. Identified
nonsynonymous SNVs and INDELs which were located in the
coding region were then used to create genotype-specific
protein sequence databases (Table 3).

Identifying Protein Sequence Variants Using Tandem Mass
Spectrometry

Using the genotype-specific protein databases generated in the
previous section, we then employed the MyriMatch database
search algorithm30 to identify tandem mass spectra belonging
to peptide sequence variants across three different tissue types
(i.e., leaf, root, and stem) for two genotypes, DENA-17-3 and
VNDL-27-4. While search algorithms assess the statistical
significance of each peptide-spectrum match (PSM), we applied
several additional criteria to ensure only high-confident, gene-
specific variant peptides remain in the dataset. To improve
confidence in peptide identifications, we implemented the
following filtering guidelines: (1) the data was filtered to
achieve an average spectrum FDR of <0.5%, (2) all sequence
variant peptides matched at least 3 different spectra, (3) each
distinct sequence variation was observed in only one gene, and
(4) evidence for the SNVs unambiguously mapped to one
nucleotide position. After applying these filtering criteria, we

Table 1. Summary of SNV Positions

genotype total 3′UTR 5′UTR coding intergenic intron

DENA-17-3 67 050 16 478 (24.6%) 6425 (9.6%) 39 863 (59.5%) 2185 (3.3%) 2099 (3.1%)
VNDL-27-4 63 360 14 875 (23.5%) 5843 (9.2%) 38 283 (60.4%) 2159 (3.4%) 2200 (3.5%)

Table 2. Summary of INDEL Positions

genotype total 3′UTR 5′UTR coding intergenic intron

DENA-17-3 8475 4443 (52.4%) 1931 (22.8%) 981(11.6%) 663 (7.8%) 457 (5.4%)
VNDL-27-4 4122 2303 (55.9%) 988 (24%) 210 (5.1%) 360 (8.7%) 264 (6.3%)

Table 3. Summary of RNA-seq Genotype-Specific Protein
Databases

genotype total RPKM > 1 SNVs INDEL

DENA-17-3 63 241 46 423 15 278 1540
VNDL-27-4 56 841 41 462 15 124 255
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identified 44 848 nonredundant tryptic peptides (Supporting
Information). In order to avoid any confusion arising from
tissue-specific protein abundances, peptide abundance profiles
were represented by summed spectral counts across tissue
types. Peptide abundances that were confidently observed in
DENA-17-3 and VNDL-27-4 were highly correlated (Pearson’s
correlation coefficient = 0.84), suggesting there are minor
variations in protein abundances between the two genotypes.
To determine the expected level of observed variation at the

protein level between each of the two subject genotypes, we
used a kinship analysis to calculate relatedness.8 The kinship
matrix, which was based on 8.2 million SNVs with a minor
allele frequency greater than 0.05, revealed that the two
genotypes are slightly more similar to each other (kinship
coefficient at ∼75%) than they are to the reference genome
(Nisqually-1), yet both genotypes had approximately 74%
similarity to Nisqually-1. Given the similarity of the two subject
genotypes to the reference genome, we expected only a modest
amount of gain in new peptide identifications using the RNA-
Seq-derived protein sequences.
However, based on the above observation and the genotype-

specific protein databases, we identified 626 and 547 new
peptide sequences for DENA-17-3 and VNDL-27-4, respec-
tively. A complete list of the variants and related information

can be found in Supplemental Tables 3 and 4 for DENA-17-3
and VNDL-27-4, respectively. Although these gains are
relatively low given the total number of peptides identified,
the probability of identifying new peptides is expected to be
further limited due to median sequence coverage (median
protein sequence coverage of ∼25%36) typically achieved using
a single protease, such as trypsin, to generate peptides.
Furthermore, using the RNA-Seq-derived protein sequences
approach is biased in the direction of differences between the
subject genotypes and the reference; that is, we can only detect
genes that are present in the reference genome, and therefore
any novel DNA sequence in either of the two subject genotypes
is hidden from comparative alignments. Nevertheless, this
approach revealed peptide identifications that were previously
unattainable using Populus reference genome as a proxy for
these two genotypes. Overall, the variants peptides observed in
DENA-17-3 and VNDL-27-4 can be attributed to 792 unique
genome coding positions, with 201 positions shared in both
genotypes. In total, there were 324 and 271 nucleotide variants
only observed in DENA-17-3 and VNDL-27-4, respectively.

Figure 1. Frequency of a substitution from an amino acid (black) to an amino acid (white). The amino acids were sorted by frequency for the
following distributions: (a) predicted frequency of substitutions in DENA-17-3, (b) predicted frequency of substitutions in VNDL-27−4, (c)
identified frequency of substitutions in DENA-17-3, and (d) identified frequency of substitutions in VNDL-27-4. For panels c and d, the amino acid
compositions from the Populus reference genome (Nisqually-1 v3.0) and the entire UniProtKB/Swiss-Prot protein knowledgebase have been
provided. The residues are colored to represent the following amino acid classes: neutral and aliphatic (black), basic (blue), acid (red), sulfur-
containing amino acids (purple), and other (green).
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Characterization of the Identified Sequence Variants in
Populus

The amino acid composition for each protein observed has
been largely influenced by subtle selection pressures [the result
of evolutionary forces acting upon random genetic mutations].
A subtle change in amino acid composition has the potential to
alter the shape, activity, and/or function of a protein. Broadly,
changes to protein amino acid composition may (1) have no
impact a protein’s functionality, (2) effectively improve protein
functionality (e.g., improve thermostability or activity), (3)
causatively change protein function, or (4) be deleterious,
caused by a destabilization effect on a protein structure or
function. Therefore, we characterized each amino acid
substitutions for DENA-17-3 and VNDL-27-4. For DENA-
17-3, the 525 observed SNVs consisted of 10 insertion and 3
deletion events and 512 nonsynonymous single nucleotide
polymorphisms that caused a single amino acid polymorphism
(SAAP). For VNDL-27-4, all 472 identified SNVs resulted in a
SAAP.
To determine if there were differences in observed SNVs

between the two genotypes, we estimated the substitution rate
of each amino acid for both genotypes. As depicted in Figure
1a−d, the predicted and observed substitution rate for both
genotypes are nearly identical, and the amino acids with the
highest substitution rates are generally aliphatic to basic, and
the lowest are acidic to aromatic. For both genotypes, we
evaluated whether the observed subtraction rate per amino acid
is equal to their replacement rate. On the basis of a chi-square
test, we found the observed substitution per amino acid was not
significantly different than the replacement rate (chi-square P
values of 0.30 and 0.57 for DENA-17-3 and VNDL-27-4,
respectively). Since mutations are generally a random process,
the observed substitution frequencies are likely derived from

the amino acid composition of the proteome. That is, given the
identified distribution of substitutions for both genotypes, the
probability of a particular amino acid substitution is likely
weighted by its frequency in the genetic code; i.e., if the
occurrence of an amino acid residue is high, the frequency of
their substitution is expected to be high. Therefore, we related
these substitution rates to the amino acid composition of the
reference genome (Figure 1c,d), as well as the entire amino
acid composition of the current UniProtKB/SwissProt protein
knowledgebase (Figure 1c,d; http://web.expasy.org/docs/
relnotes/relstat.html). Indeed, the most substituted amino
acids are among the most frequently observed amino acids in
nature. Since amino acid composition is well-conserved from
species to species,37 evolutionary pressures on the genetic code
clearly established fitness with respect to amino acid
composition in order to minimize the consequences of
mutations to protein stability and/or function, explaining the
observed frequencies of amino acid substitutions for these
Populus genotypes.
In conjunction with amino acid composition, the genetic

code ensures that amino acid substitutions due to mutations
result in the interchange of similar amino acids, in so doing,
buffering the impact on protein stability and/or function.38 To
test this hypothesis, we assessed the occurrence of the types of
SAAPs observed for both Populus genotypes as well as their
frequencies. We observed an immensely diverse set of SAAPs,
identifying 128 different types of substitutions (Supplemental
Table 5). We evaluated whether the frequency of the types of
SAAPs was similar for both genotypes. On the basis of chi-
square tests, and as depicted in Figure 2a,b, the frequencies of
the types of SAAPs were similar for both genotypes. These
frequencies, in conjunction with the Blosum62 matrix (Figure
2c), show the well-known observation that interchangeability is

Figure 2. Identified occurrences of SAAPs. The amino acids on the x-axis were sorted by the identified frequencies shown in Figure 1. SAAPs in (a)
DENA-17-3 and (b) VNDL-27-4 were graphed using Seq2Logo, using the logo type, PSSM-Logo. The residues are colored to represent the
following amino acid classes: neutral and aliphatic (black), basic (blue), acid (red), sulfur-containing amino acids (purple), and other (green). (c)
BLOSUM62 matrix, provided to illustrate the log probability of the substitution of one amino acid by another.
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an artifact of the relative mutability of an amino acid, where
conservative changes to chemically and physically similar amino
acids are likely to be nearly neutral and therefore are more
likely to be accepted, thereby minimizing the phenotypic effect.
For example, hydrophilic residues aspartic acid (D) and
glutamic acid (E) have a common second base-pair in their
codons and are therefore observed to frequently substitute one
another.
To interpret the functional impact of each SAAP and INDEL

on its protein, we employed PROVEAN (Protein Variation
Effect Analyzer39), a software tool which predicts whether an
amino acid substitution has an impact on the biological
function of a protein. Figure 3 shows the distribution of

PROVEAN scores for each SAAP for each genotype. A
predefined PROVEAN score threshold of −2.5 was selected to
allow for the best balanced discrimination between non-neutral
and neutral classes.39 With this threshold, 10% of all SNVs were
predicted to have a non-neutral effect. A complete list of the
PROVEAN scores and related information can be found in
Supplemental Tables 3 and 4 for DENA-17-3 and VNDL-27-4,
respectively. Overall, 46 SAAPs and 1 deletion were predicted
to have a non-neutral effect on their respective proteins in
DENA-17-3. For VNDL-27-4, 49 SAAPs were predicted to
have a non-neutral impact. Although these variants are
predicted to alter a conserved residue, these are still predictions
and therefore may or may not have an impact on protein
function.

While determining the functional impact of each variant is
beyond the scope of this study, using information from a recent
population genomics study of Populus,8 we were able to
examine whether identified protein variants belong to genomic
regions that appear to be affected by natural selection.
Intriguingly, 107 identified SNVs for 84 genes were found in
regions of the genome with strong polymorphism patterns
consistent with recent positive and/or divergent selection
(Supplemental Tables 6 and 7). Of the 107 SNVs, 11% were
predicted to have a non-neutral effect, presumably related to
purifying selection. Surprisingly, we identified four SAAPs
across one gene (Potri.003G043900), which encodes dihy-
drolipoamide acetyl/succinyl-transferase, and one of the SAAPs
in the same gene individually had non-neutral effects.
Unfortunately, to our knowledge, there is no validation
evidence or natural variants confirming function for this
specific protein. However, the ortholog of this particular
protein in A. thaliana has been shown to have heavy-metal
binding properties.40 Among the highest selection pressures
known in ecology, genes annotations associated with heavy-
metal homeostasis and symbiosis are overrepresented in classic
recent selective sweeps:41 also known as the “hitch-hiking
effect”,42 a selective sweep happens when a new, advantageous
mutation is rapidly fixed in a population. Interestingly,
Potri.003G043900 was observed by Evans et al.8 and was
shown to be in a region of the genome subjected to a selective
sweep. In addition, we identified 25 other genes subjected to a
selective sweep. Studying such genes may lead to interesting
phenotypes that are important in understanding the nature of
natural selection in Populus.

Exploring the Diploid Landscape in Populus Proteomes

The Populus proteome is a function of a diploid entity, yet the
protein reference database is incomplete with respect to alleles
and their relevant biallelic combinations. Beyond identifying
variants, the RNA-Seq-derived protein sequences approach
offers the ability to identify and quantify the relationship of
alleles of genes. Leveraging information from the whole-
genome resequencing data from 1084 Populus genotypes (8),
each polymorphic position for the two subject genotypes was
characterized as homozygous with the reference (0/0), hetero-
zygous with the reference (0/1) or homozygous alternate (1/1). As
shown in Figure 4, roughly half of the identified SAAPs belong
to heterozygous loci, while the other half belong to a
homozygous alternate allele that is genotype-specific. In total,
240 heterozygous polymorphic positions were observed for
DENA-17-3, and for 156 of these positions, we identified both
the reference and alternate allele version of the protein. We
identified 216 heterozygous polymorphic positions for VNDL-
27-4, and for 149 of these positions, we identified both the
reference and alternate allele version of the protein. While the
RNA-Seq-derived protein sequences approach allows the
detection of heterozygous variants, we were not able to identify
the segregation of variants among each paternal copy because
the typical peptide length fell within shared protein space
among the two haplotypes. Efforts to build haplotypes during
genome assembly will likely extend the characterization of
haplotypes at the protein level.43

Comparing Identified Sequence Variance Across All -Omic
Resources

Currently, direct links between genomic, transcriptomic, and
proteomic sequencing data are not frequently made in GWA
investigations. Given the breadth of information available, it

Figure 3. Identification of SAAPs variants that are predicted to be
functionally important. Distribution of PROVEAN scores for (a)
DENA-17-3 and (b) VNDL-27-4 illustrates the frequency of SAAPs
predicted to have a non-neutral (blue; PROVEAN score <−2.5) or
neutral effect (black; PROVEAN score ≥−2.5).
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would be highly advantageous to enable the co-visualization of
genomics, transcriptomics, and proteomics sequencing to

manually validate the discovery of novel protein isoforms.
Therefore, to navigate the three available -omic resources (i.e.,
whole-genome resequencing, RNA sequencing, and protein
sequencing), we integrated these -omic data sets using
JBrowse,44 a tool that can be used to compare and correlate
the sequence information obtained over a JavaScript-based web
browser. The collected -omic resources for DENA-17-3 and
VNDL-27-4 have been made publicly accessible and can be
viewed at http://besc-portal.ornl.gov/jbrowse/JBrowse-1.11.4/
?data=Populus. For example, Figure 5 illustrates how direct
links between genomic, transcriptomic, and proteomic data
facilitate the validation of variant discovery by observing the
precise base position where RNA-sequencing reads and LC−
MS/MS-derived peptides cover genes or gene isoforms at the
tissue specific level. In this particular illustration, we highlight
the mRNA and protein abundance ratios for a heterozygous
locus. This is a critical piece of information which could greatly
aid and inform the down-selection of possible candidates for
connecting genotype to phenotype characteristics. The
availability of this integrated data architecture provides a wealth
of information that facilitates easy access to visually detailed
information across all three -omic resources, highlighting the
need for appropriate bioinformatic tools to co-visualize multiple
-omic resources.45

■ CONCLUSIONS

Although discoveries of genetic associations will further our
understanding of biology, after candidate variants have been
identified, investigators are faced with the challenge of
functionally characterizing the variants. Therefore, there is a
significant need to characterize the impact of these variants at
the protein level. In conjunction with a known and defined
genome sequence, shotgun proteomics is a remarkable high-
throughput technology for identifying and quantifying variant
proteins. A fundamental challenge for shotgun proteomics,
however, is that the technique ultimately relies on the
completeness of the genome sequence. Although several

Figure 4. Allele frequency for single nucleotide variant loci. The
zygosity of each SNV location was assessed relative to (a) DENA-17-3
and (b) VNDL-27-4. Each locus was classified as one of the following:
0/0 (homozygous reference), 0/1 (heterozygous), or 1/1 (homo-
zygous alternate).

Figure 5. Viewing sequence variance across all -omic resources. A screenshot of the JBrowse resource (http://besc-portal.ornl.gov/jbrowse/JBrowse-
1.11.4/?data=Populus) illustrates the available whole-genome resequencing (WGS), RNA-sequencing (RNA-seq), and peptide sequencing data for a
specific gene for DENA-17-3. In addition, the mRNA and peptide counts were provided for an example of identifying both alleles of a heterozygous
locus.
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bioinformatic solutions for this issue have been presented, we
propose that leveraging RNA sequencing information to build
sample-specific protein databases will become commonplace
when investigating protein sequence variants. Therefore, in this
study, we evaluated a conceptual, analytical, and quantitative
framework to profile natural sequence variants at the protein
level in Populus.
Using RNA sequencing data to construct sample-specific

protein reference databases, we were able to quantify a variety
of natural sequence variants in two Populus trichocarpa
genotypes. We detected well-known observations related to
natural variants; e.g., most single amino acid polymorphisms
were conservative changes to chemically and physically similar
amino acids, which minimize effects to protein function,
verifying the accuracy of our overall approach. In addition, we
show how natural amino acid compositions heavily influence
the frequency of the types of substitutions. Most importantly, in
addition to expected, neutral single amino acid polymorphisms,
we identified polymorphisms predicted to be non-neutral and
located in regions of the genome predicted to have undergone
recent positive and/or divergent selection and therefore
represent a candidate list of protein variants relevant to plant
adaptability. Additionally, this integrated -omics effort further
improves the characterization of genotypes by enabling the
reliable detection and quantitation of relevant biallelic
combinations of protein isoforms. Overall, this approach
afforded the detection of peptide sequence variants spanning
792 unique genome coding positions belonging to 659 loci.
Because these variants would not have been detected had we
used the reference genome as a proxy for the protein database,
profiling genotype-specific proteomes derived from RNA
sequencing data better defines the link between genotypes
and phenotypes, which will enable future studies to detect and
quantitatively profile non-neutral variants underpinning plant
adaptation.
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