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’ INTRODUCTION

The advent of high-throughput DNA sequencing has revolutio-
nized the assembly of high-quality genomes for prokaryotes and
eukaryotes such as plants and humans.1 The release of reference
genomes (http://www.phytozome.net) has paved the way for
“omics”-based research which has focused on the identities and
functions of the suites of genes and proteins that are important for
plant growth and development.2 In particular, the rapidly develop-
ing field of proteomics is already providing remarkable insight into
cellular activities at the protein level that complement genomic and
transcriptomic investigations.3�5 That is, obtaining deep protein-
level measurements for the identification, quantification, post-
translational modification, and localization of proteins has
facilitated a more comprehensive understanding of molecular
functionality. While there are a variety of proteomic techniques
available to measure protein abundance, they differ greatly in
their analytical merits of sensitivity, depth of measurement,
resolution, and throughput.

The most commonly used platform for plant proteomics has
been two-dimensional gel electrophoresis (2-D PAGE) followed by
protein sequencing via mass spectrometry.6 A number of plant
proteomic studies published to date have used this platform to map

proteomes of various cells, tissues, and organs.7�9 More recently,
online chromatographic mass spectrometry-based proteomics has
dramatically extended the throughput and depth of protein identi-
fication in complex mixtures by interfacing multidimensional liquid
chromatography with nanoelectrospray tandem mass spectrometry
(2D-LC�MS/MS).10�12 Using this gel-free approach, shotgun
proteomics (analysis of proteolytic peptide mixtures) has provided
detailed qualitative and quantitative observations of cellular meta-
bolic activity for Oryza sativa (rice), Arabidopsis, and Populus.13�15

Following the release of the Populus trichocarpa genome in 2006,
Populus emerged as amodel system for the study ofwoody perennial
plant biology.16 The availability of a sequenced genome has
prompted vigorous proteomic investigations aimed at elucidat-
ing developmental phenomena pertinent to Populus.17�20 Here,
we investigate the growth and development of the tree vascular
network which involves a complex system that integrates both
molecular signaling components and regulation of protein expres-
sion. In higher plants, this elaborate network exists in two vascular
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ABSTRACT: Current state-of-the-art experimental and computational proteo-
mic approaches were integrated to obtain a comprehensive protein profile of
Populus vascular tissue. This featured: (1) a large sample set consisting of two
genotypes grown under normal and tension stress conditions, (2) bioinformatics
clustering to effectively handle gene duplication, and (3) an informatics approach
to track and identify single amino acid polymorphisms (SAAPs). By applying a
clustering algorithm to the Populus database, the number of protein entries
decreased from 64689 proteins to a total of 43069 protein groups, thereby reducing
7505 identified proteins to a total of 4226 protein groups, in which 2016 were
singletons. This reduction implies that ∼50% of the measured proteins shared
extensive sequence homology. Using conservative search criteria, we were able to
identify 1354 peptides containing a SAAP and 201 peptides that become tryptic
due to a K or R substitution. These newly identified peptides correspond to 502
proteins, including 97 previously unidentified proteins. In total, the integration of deep proteome measurements on an extensive sample
set with protein clustering and peptide sequence variants provided an exceptional level of proteome characterization for Populus, allowing
us to spatially resolve the vascular tissue proteome.
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tissues, phloem and xylem. Spanning the entire length of plants,
these extensive vascular networks are responsible for the distribu-
tion of water and essential nutrients across long distances to vital
locations. Insights derived from the detailed identification of
proteins and their abundances within Populus vascular tissues
will undoubtedly yield an improved understanding of the
growth and development processes, such as wood biogenesis
and drought response.

The full potential of shotgun proteomics in plants is limited in
part by the complexities of the proteomic reference database. Most
plant genomes contain functional gene redundancies, segmental
duplications, single nucleotide polymorphisms (SNPs), and whole-
genome reorganizations that have led to gene duplications and
adaptive specialization of pre-existing genes (i.e., gene models,
protein families and gene duplications that share >90% sequence
identity). This inherent redundancy within all plant proteomes
confounds the accuracy of the proteome characterization, inflating
the total number of proteins identified and/or leading to incorrect
biological interpretations. A sophisticated bioinformatics workflow
for assigning peptides to proteins and for interpreting resulting
protein identifications has to be employed to deal with gene
duplications and extended gene families in Populus.

Database searching algorithms, such as SEQUEST21 and
MASCOT,22 which are commonly used to match experimental
tandem mass spectra to theoretical fragmentation spectra
generated from a predefined proteomic sequence database,
cannot resolve peptide spectral matching for any peptide
variation unaccounted for in the database. Therefore, when
dealing with higher eukaryotes such as humans23 and plants, a
major issue for tandem MS and peptide identification algo-
rithms is the high level of sequence variation, including
naturally occurring post-translational modifications (PTMs)
and SNP-based single amino acid polymorphisms (SAAPs). In
many proteomic measurements, such as those for microbial
species, modifications and peptide isoforms do not dramati-
cally affect proteome identification and thus are ignored. In
contrast, the complexities of plant proteomics demand atten-
tion to these protein alterations, as they have a significant
impact on the quality of the proteome characterization.24

Thus, the degree of sequence variation in Populuswas explored
to identify a number of unassigned quality spectra that result
from these common peptide modifications.

In this study, current state-of-the-art experimental and
computational approaches were employed to obtain a broad
proteome profile of Populus vascular tissue. The experimental
context includes (1) a large Populus sample set consisting of
two genotypes grown under normal and tension stress
conditions,25 (2) bioinformatics clustering to effectively han-
dle gene duplication, and (3) an informatics approach to track
and identify single amino acid polymorphisms. Together, the
integration of deep proteome measurement on an extensive
sample set with protein clustering and characterization of
peptide sequence variants has provided a level of proteome
characterization for Populus that has not yet been observed.

2. MATERIALS AND METHODS

2.1. Plant Material
Clonally propagated stem cuttings of two Populus clones were

established under standard cultural greenhouse conditions following
procedures outlined by Kalluri et al. (2009).15 Two clones were
sampled “WV94”, a pure Populus deltoides clone, and “717”, a

P. tremula x alba clone. Cuttings were allowed to grow under
normal conditions for six months and then half of the trees in each
clone were subjected to tension stress by bending the stem from the
apical meristem to the mid stem.25 After two weeks, xylem and
phloem tissue samples were collected from the upper (tension) and
lower (opposite) sides of bent stems as well as erect control
(normal) stems as described in Kalluri et al. 2009.15 Six ramets
per tissue type per genotype were pooled together for proteomic
measurements.

2.2. Protein Extraction and Quantification
Xylem and phloem tissue were ground under liquid nitrogen

using amortar and pestle. For each growth condition, a 3 g sample of
ground tissue was suspended in 15 mL lysis buffer containing
125 mM Tris (pH 8.5), 10% glycerol, 50 mM DTT and 1 mM
EDTA.26 The suspension was vortexed twice for 30 s each time,
then sonicated (Branson 185 sonifier, power setting of 40) on ice for
three rounds of 30 s. Large debris was removed from the sample by
centrifugation for 5 min at 1200� g. The supernatant was again
centrifuged for 10min at 12000� g, and the pellet discarded. A final
centrifugation step at 100000� g for 1 h yielded a crude soluble
protein fraction (cytosolic fraction) and a pellet (pellet fraction).
Protein concentration was determined using Lowry’s method.27

2.3. Protein Digestion
The digestion protocol was modified from methods applied

in proteomic analysis of xylem tissue.15 Prior to MS analysis,
samples were denatured and reduced with 6 M guanidine/
10 mM dithiothreitol (DTT) for 1 h at 60 �C. These denatured
and reduced samples were diluted with 50 mM Tris-HCL/
10 mM CaCl2 (pH 7.6) to reduce the guanidine concentration
to 1M. Proteins were digested into peptides with 1:100 (w/w)
sequencing-grade trypsin (Promega, Madison, WI) at 37 �C
overnight, followed by a second addition of the same amount
of trypsin and incubation for an additional 4 h at 37 �C.
Centrifugation (3000� g for 10 min) was performed to
remove cellular debris from solution. Digested peptides were
desalted off-line using C18 solid phase extraction via SepPak
Plus C18 cartridges (Waters), eluting peptides using 100%
acetonitrile (ACN). Samples were concentrated using vacuum
centrifugation (SpeedVac, Savant Instruments, Holbrook,
NY), bringing the final volume to ∼500 μL.

2.4. LC�MS/MS
Peptide analysis was performed using two-dimensional liquid

chromatography (strong cation-reverse phase) interfaced with a
linear ion trap mass spectrometer (LTQ Thermo Fisher, San
Jose, CA) as previously described.28 In total, 24 different samples
were analyzed with 2�3 technical replicates for each sample.
For each sample, 100 μg of peptides were bomb-loaded onto a
150-μm inner-diameter back column packed with 4 cm of strong
cation exchange column (SCX; Luna, 5 μM particle, 100 Å pore
size [Phenomenex]). Prior to MS analysis, each column was
washed off-line for 30 min with a gradient from aqueous solvent
(95% H2O/5% ACN/0.1% formic acid) to 50% organic solvent
(30% H2O/70% ACN/0.1% formic acid). Following the SCX
wash, the back column was then attached to a 100-μm inner-
diameter front column packed with C18 reverse phase (Aqua,
300 Å pore size [Phenomenex]) integrated with a nanospray tip.
The column system was positioned on a nanospray source
(Proxeon, Denmark) that was aligned in front of the LTQ mass
spectrometer. Liquid chromatography was performed by an
Ultimate 3000 HPLC pump (LC Packings; a division of Dionex,
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San Francisco, CA) at a flow rate of∼300 nL/min at the nanospray
tip. All samples were analyzed via 2D-LC over 24 h by 11 con-
secutive pulses at increasing ammonium acetate salt concentration
(0�500 mM), with each salt pulse followed by a 2-h reverse phase
gradient elution. During the chromatographic separation, the LTQ
was operated in a data-dependent mode and under the direct
control of the Xcalibur software (Thermo Fisher Scientific).
Tandem mass spectra were acquired in a data-dependent mode
provided byXcalibur software. The data-dependent acquisition used
the following parameters: collision-activated dissociation of 5 parent
ions were performed following every full scan; 2 microscans were
averaged for every full MS andMS/MS spectrum; a 3m/z isolation
width was permitted; 35% collision energy was used for fragmenta-
tion; and a dynamic exclusion repeat of 1 with duration of 3 min.

2.5. MS Bioinformatic Analysis

2.5.1. MS/MS Protein Identification. For peptide identifica-
tion, experimental MS/MS spectra were compared to theoretical
tryptic peptide sequences generated from a database containing
(1) the protein database of P. trichocarpa (v2.0, available at
http://www.phytozome.net/cgi-bin/gbrowse/poplar/, con-
taining 45778 proteins), (2) predicted small proteins (20565;
10�200 amino acids in length),29 and (3) common contaminant
proteins (i.e., bovine trypsin and human keratin). A decoy
database, consisting of the reversed sequences of the target
database, was appended in order to determine the false-discovery
rate (FDR) for protein identifications.30 AllMS/MS spectra were
searched using the SEQUEST algorithm (tryptic cleavages, e 4
missed cleavages allowed) with a parent ion mass tolerance of 3.0
m/z units and a fragment mass tolerance of 0.5 m/z units.
Resulting peptide identifications from SEQUEST were filtered
and organized into protein identifications using DTASelect
version 1.9.31 Peptide identifications required XCorr values of
at least 1.8 (+1), 2.5 (+2), or 3.5 (+3) and a DeltaCN g 0.08.
Unless otherwise stated, only proteins identified with two fully
tryptic peptides were considered for biological interpretation.
These filtering criteria yielded peptide FDRs less than 1%.
Estimates of relative protein abundances were based on normali-
zed spectral abundance factors (NSAFs), a semiquantitative
label-free approach.32 NSAF values for each protein were calcu-
lated and a value of 0.01 was added to each value to compensate
for null values.33,34 Each NSAF value was then multiplied by a
factor of 10000 to convert the NSAF decimal value to a value
much easier to visualize.35 All adjusted NSAF values observed by
LC�MS analysis from each growth condition were extracted
into a single worksheet.
2.5.2. Creation of Protein Groups. P. trichocarpa database

proteins sharing extensive sequence homology were assigned to
protein groups using a freely available software package,
USEARCH v4.0.36 Proteins that shared more than 90% of their
sequence with another protein in the database were clustered by
pairwise sequence comparisons using the UCLUST program
(similarity threshold of 0.9). A similarity threshold of 0.9 was
chosen to reflect the level of intraproteomic similarity in the
Populus proteome: two genome-wide duplication events have
increased the level of redundancy, in which nearly two-thirds of
the protein-coding genes share sequence similarity (>90%).37

Moreover, plotting similarity thresholds ranging from 0.5 to 1.0
against the percent proteome reduction via clustering provided
further support in choosing 90% as a cutoff (data not shown).
Protein groups are defined by the longest protein sequence, the
seed, which shares g90% sequence identity to each protein in

that cluster. All groups were manually verified to ensure that
obvious redundancies, such as alternatively spliced variants,
remained together. In contrast with the database searching
parameters detailed in section 2.5.1, peptides belonging to
proteins that passed DTASelect’s one peptide filter were reorga-
nized into protein groups. Those identified peptides that were
unique to a particular protein group were marked as protein-group
unique, meaning these peptides did not belong to another group
of proteins. All peptides that were originally database-unique
were necessarily protein group-unique, but grouping the pep-
tides of homologous proteins allowed nondatabase-unique pep-
tides to be considered unique if they belonged to only one
protein group identification, that is, a protein-group-unique
peptide. NSAF values were calculated for each protein group
by normalizing the sum of the total spectral counts for each
peptide belonging to a protein group. For peptides belonging to
multiple protein groups, the spectral counts were recalculated
based on the proportion of uniquely identified peptides between
the protein groups sharing the peptide in question.35,38 While
NSAF values typically account for biases resulting from protein
length, here NSAF values were calculated for each protein group
by using the length of the seed sequence. Adjusted NSAF values
were calculated for each protein group.
These protein-group unique peptides were instrumental in

both parts of a two-tiered filtering process performed on the
identified protein groups. The first filter required evidence of at
least one protein-group unique peptide and two total peptides to
support the unambiguous identification of a protein group. The
second filter removed low abundance protein groups with
adjusted NSAF values less than 5.
2.5.3. Single Nucleotide Polymorphism Analysis. High-

throughput SNP discovery through deep (approximately 30�
depth per genotype) resequencing of 19 trees yielded 16 million
SNPs in the Populus genome (485 Mb) (unpublished results).
For this analysis, a subset of these SNPs present in 2 P.
trichocarpa and 2 P. deltoides genotypes were considered. Of
the 17 million amino acid positions found in P. trichocarpa’s
45778 protein-coding gene models, ∼400000 amino acid posi-
tions due to nonsynonymous SNPs (SAAP) were investigated.
All possible combinations of SNP-influenced peptides (SAAP
peptides) were predicted and subjected to in silico tryptic
cleavage using PeptideSieve software39 with the following para-
meters: maximum mass criterion of 5000, minimum sequence
length of 6, maximum sequence length of 50 and allowing for
4 missed cleavages. Some of the nonsynonymous amino acid
changes resulted in new tryptic cleavage sites or resulted in
disappearance of these sites. These were taken into consideration
while predicting the peptides. To detect the expression of a SAAP
peptide, experimental MS/MS spectra from one MS run were
compared to theoretical tryptic peptide sequences generated
from a target database consisting of the protein database of P.
trichocarpa (v2.0) and all predicted SAAP peptides. Each SAAP
peptide was concatenated to the target database as a new protein
entry, in which ten tryptophan residues flanked both sides of the
peptide sequences. For SAAP peptides that originated from the
N-terminus of a protein, the tryptophan residues were excluded
from the beginning of the SAAP peptide. Similarly, for each
SAAP peptide that originated from the C-terminus of a protein,
the tryptophan residues were excluded at the end of the SAAP
peptide. In total, 7775313 additional entries from SAAP peptides
were included. All MS/MS were searched with SEQUEST and
filtered by DTASelect as described above. Similar to section
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2.5.1, filtering criteria were controlled to yield peptide FDRs less
than 1%.

3. RESULTS AND DISCUSSION

3.1. Characterizing the Landscape: Global Survey of the
Populus Proteome

3.1.1. Mapping Deep Measurements to the Populus
Proteome. To generate a high-coverage proteome profile, we
performed shotgun proteomics on a large sample set consisting
of subcellular fractions (soluble, pellet) of two tissue types
(xylem, phloem) from two Populus species: P. deltoides and P.
tremula � alba. Using the most recent Populus genome draft
(v2.0, http://www.phytozome.net/cgi-bin/gbrowse/poplar/),
tandem mass spectra from 60 Populus proteome measurements
collectively identified 7,505 total proteins and 33233 tryptic
peptide sequences with an overall false discovery rate of <1% at
the protein level. Combining the proteome measurements
together provided a global view of protein expression involved
in vascular tissue development, resulting in protein assignments
for ∼17% of the predicted Populus proteome. Approximately
40% of all detected proteins belonged to three specific function-
al categories based on 24 EuKaryotic Orthologous Groups
(KOGs): (1) unknown function, (2) post-translational modifica-
tion and turnover, and (3) signal transduction (Figure 1). The
remaining identified proteins are scattered across the other

Figure 1. Distribution of detected proteins by their functional classifi-
cation. The data indicates the most abundant functional categories for
the combined xylem and phloem vascular tissue proteomes.

Table 1. Total Number of Proteins and Peptides Observed for Each of the 12 Conditions in Two Genotypes

P. deltoides P. tremula X alba

sample type proteins peptides proteins peptides

Xylem Stress (Normal) Soluble Replicate 1 3690 18715 2980 14694

Xylem Stress (Normal) Soluble Replicate 2 3623 18371 2795 12079

Xylem Stress (Tension) Soluble Replicate 1 3088 17278 2889 13497

Xylem Stress (Tension) Soluble Replicate 2 3200 17730 3048 17223

Xylem Stress (Opposite) Soluble Replicate 1 3846 20579 3032 16929

Xylem Stress (Opposite) Soluble Replicate 2 3608 19541 2106 9683

Xylem Stress (Normal) Pellet Replicate 1 2145 8353 1631 6584

Xylem Stress (Normal) Pellet Replicate 2 2304 9491 1467 5549

Xylem Stress (Normal) Pellet Replicate 3 2325 9418 894 2654

Xylem Stress (Tension) Pellet Replicate 1 2267 10923 1714 5491

Xylem Stress (Tension) Pellet Replicate 2 2092 9618 1949 7843

Xylem Stress (Tension) Pellet Replicate 3 2130 9735 1477 4724

Xylem Stress (Opposite) Pellet Replicate 1 2340 9902 1380 4250

Xylem Stress (Opposite) Pellet Replicate 2 2276 9582 1680 5641

Xylem Stress (Opposite) Pellet Replicate 3 2203 9627 1835 6680

Phloem Stress (Normal) Soluble Replicate 1 2322 8401 1676 6198

Phloem Stress (Normal) Soluble Replicate 2 2237 8314 1243 4021

Phloem Stress (Tension) Soluble Replicate 1 2798 10995 1585 5538

Phloem Stress (Tension) Soluble Replicate 2 2840 11519 1412 4557

Phloem Stress (Opposite) Soluble Replicate 1 2396 8875 1328 4270

Phloem Stress (Opposite) Soluble Replicate 2 2432 9094 1657 6128

Phloem Stress (Normal) Pellet Replicate 1 2038 5706 1895 5808

Phloem Stress (Normal) Pellet Replicate 2 2091 5964 788 1591

Phloem Stress (Normal) Pellet Replicate 3 1944 5699 1335 3327

Phloem Stress (Tension) Pellet Replicate 1 2314 7176 529 903

Phloem Stress (Tension) Pellet Replicate 2 2158 6500 347 503

Phloem Stress (Tension) Pellet Replicate 3 2164 5636 500 823

Phloem Stress (Opposite) Pellet Replicate 1 2124 6860 1824 5450

Phloem Stress (Opposite) Pellet Replicate 2 2054 6651 1864 5123

Phloem Stress (Opposite) Pellet Replicate 3 1563 4149 2027 5898
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functional categories. The number of redundant proteins and
peptides identified for each sample type and technical replicate
are shown in Table 1.
3.1.2. Genetic Redundancy and Protein Classification.

Shotgun proteomics employs a peptide-centric approach that
relies on the ability to accurately assemble and assign thousands
of measured peptides to reference proteins in biological samples.
Although this is the conventional method for identifying proteins in
large-scale studies, this approach presents several challenges when
assigning peptides to proteins in higher eukaryotes. The most
common issue deals with inferring a protein’s existence through
the identification of peptides that constitute its primary structure.
“Protein inference” becomes problematic when two or more
proteins share peptides.40�42 Shared or degenerate peptides are
natural occurrences that originate from protein homology, con-
served protein domains among various proteins, splice variants, and
redundant entries due to gene duplication events, all of which are
common in plants.43,44 In fact, the Populus genome is highly
genetically redundant, such that two-thirds of protein-coding genes
share sequence similarity greater than 90%.37 Therefore, within the
large data sets, emphasis must be placed on accurate identification
and validation of proteins, accounting for highly conserved, shared
peptides.
In previous studies, the categorical nomenclature of Yang et al.

(2004)45 has been adapted to rationally organize the peptide data
from each LC�MS/MS experiment. Several research groups have
shown that this nomenclature can be coupled with Occam’s razor
constraints to provide a minimal list of proteins to explain all
observed peptides.42 Using this classification method, we consoli-
dated protein assignments by their level of uniqueness. Proteins that
consist of only uniquely identified peptides were classified as distinct
proteins. Proteins were classified as differentiable when they contain
at least one peptide that is unique to that locus, as well as one or
more peptides that map elsewhere in the proteome. The indis-
tinguishable proteins consisted ofmeasured nonunique peptides that
map elsewhere in the data set. Within our entire data set, only 50%
of the tryptic peptides identified were classified as unique to the
database. Therefore, out of the 7505 total protein identifications in
the present study, 3510 proteins were uniquely identified (classified
as distinct or differentiable) and 3995 proteins were categorized as
nonunique or indistinguishable (Supplemental Table 1, Supporting
Information).
Using the nomenclature above, we generated a minimal list of

proteins that were conclusively determined to be present within the
data set. However, due to the inherent ambiguity of the Populus
proteome, less than 50% of the proteins categorized by the above-
mentioned criteria could be used for biological interpretation. In
addition, due to the extensive homology within the database, a vast
majority of the proteins were classified as indistinguishable. As most
of the proteins in this category contain no unique peptides, it was
difficult to determine which specific proteins were present in the
sample using anMS-based approach. As shown in other studies, one
approach for proteins that cannot be distinguished on the basis of
identified peptides is to collapse these into protein groups to provide
a more accurate and informative data set.46,47 In an attempt to
reconcile this problem, a bioinformatics workflow was incorporated
to better handle proteins sharing high sequence homology (g90%)
to increase qualitative accuracy by avoiding the over- and under-
identification of homologous proteins.
An illustration of the informatics workflow can be seen in

Figure 2A. Briefly, proteins sharing 90% or more sequence identity
were clustered into groups by UCLUST, a clustering algorithm

functionally equivalent to BLASTP.36 Each protein group was
defined by a representative protein sequence called a seed, where
each seed shares g90% sequence identity to each protein in that
cluster. By applying the clustering algorithm to the Populus database,
the number of protein entries decreased from 64689 proteins to a
total of 43069 protein groups. Implementation of clustering to the
data set reduced the 7505 observed proteins to a total of 4226
protein groups (seeMethods), in which 2016were singletons (i.e., a
one-member group). This reduction implies that ∼50% of the
observed proteins were clustered into groups that shared extensive
sequence homology. Therefore, this approach effectively consoli-
dates indistinguishable proteins into a meaningful report. Although
groupingproteins by high sequence similarity undoubtedly sacrifices
some level of protein resolution, it is reasonable to assume that
proteins with this level of sequence homology share similar
biological functions. Furthermore, integrating the clustering ap-
proach with the initial SEQUEST analysis provided a means to
categorize which members of a protein group were unique.
Due to the peptide-centric nature of shotgun proteomics, it

was imperative to report peptides in the context of protein
groups. As expected, clustering proteins into groups alleviated
some of the ambiguity associated with shared peptides. Similar to
a peptide being unique to a protein within the database, we found
many peptides were unique to a particular protein group within
the clustered database. In fact, 68% of previously shared peptides
that were classified as nonunique to the Populus database were
reclassified as unique to the clustered database. Moreover, the
bioinformatics workflow generated a data set where 84% of the
detected peptides were classified as unique. Therefore, rather
than disregarding these peptides from the analysis, they were
rescued and used for biological insight (Figure 2B). While it may
not be clear as to which member of a protein group is actually
present in a given sample, the identification of peptides belong-
ing to a particular protein group likely indicates the presence
of a shared functional process, especially considering the
relatively stringent similarity cutoff (90%) applied to the protein
database.48

3.1.3. Characterization of the Populus Vascular Tissue
Proteome. Xylem and phloem tissues are responsible for long-
distance transportation and storage of essential minerals and
nutrients in plants. A recent study used shotgun proteomics to

Figure 2. Illustration of bioinformatic workflow. (A) All proteins in the
proteomic database were clustered by UCLUST to deal with gene
duplications and extended gene families. (B) After the proteins were
clustered into protein groups, a conservative two-tiered filtering ap-
proach was used to eliminate (1) ambiguous identifications and (2)
those at the lower detection limits.
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examine proteins expressed during xylem development.15 This
approach demonstrated an ability to robustly characterize xylem
tissue in Populus by vastly increasing the number of proteins
identified and characterized relative to previous Populus proteome
studies.17 In the current study, a similar experimental approach was
applied to identify and contrast the relationship and dissimilarities
between the xylem and phloem proteomes. A “core” proteome
was extracted from the entire data set, consisting of 2627 protein
groups that were confidently identified in both xylem and phloem.
The core proteome, encompassing 59% of the total proteins
identified in the Populus data set, includes proteins representing
each KOG category (Figure 3). The core metabolic signature is
consistent with other studies that show an overrepresentation of
proteins that are involved in energy production and translation.14

Moreover, a similar quantitative distribution profile was also
observed during xylem development.15,29 In addition, these
functionally and spatially separate vascular networks contain
tissue-specific proteins: 606 unique xylem proteins-groups
and 461 unique phloem protein groups, each having a distinct
metabolic profile as shown in Figure 3.
3.1.4. Regulatory Proteins Involved in Vascular Tissue

Development. Among the proteins identified in the Populus
data set there were proteins that have been shown to control the
patterning and differentiation of vascular tissues. Interestingly, the
receptor protein kinase CLAVATA1 precursor, a part of the
CLV3/CLV1 system, was exclusively identified in phloem tissue.
The developmental process of the plant vascular network is a
complex system that integrates both molecular signaling compo-
nents and regulation of protein expression. Stem cells in the shoot
apical meristem regulate the continuous formation of the different
tissues during vascular formation. It has been shown that the
receptor protein kinase CLAVATA1 governs stem cell fates in
the shoot apical meristem. Along the boundaries of the procam-
bium/cambium space of postembryonic tissue, this process occurs
when CLAVATA1 binds to the protein ligand CLE41, which is
secreted from the phloem.49,50

We also identified bri1 suppressor 1 (BSU1) protein only in
xylem tissue. BSU1 is a ser/thr-protein phosphatase that has been
shown to be a positive regulator of brassinolide signaling, thereby
playing an important role in the regulation brassinosteroids.51 It
has been shown that brassinosteroids regulate xylem differentia-
tion and vascular patterning from cambium cells.52 Furthermore,
brassinosteroid lack-of-function mutants in Arabidopsis53 and
rice54 disrupt vascular development. It is also known that
the plant hormone auxin plays a critical role in the cell-to-cell
communication in vascular differentiation.55 We detected evi-
dence for peptidyl-prolyl cis�trans isomerase protein (PIN1)
expression in both xylem and phloem tissue. Currently, many
studies suggest that the formation of plant vascular networks is an
auxin-transport-based mechanism and the driving force behind
this mechanism is the accumulation and polarization of PIN1, an
auxin efflux carrier.56,57 On the basis of our measurements, PIN1
expression in phloem may provide a bidirectional pathway for
long-distance transportation, while expression in xylem leads to
vascular development and xylem differentiation.
3.1.5. Biosynthesis and Development of Wood Cell

Walls.We identified several of the cell wall-related carbohydrate
active enzymes within our data set, including cellulose synthases,
pectin methyl esterases, and xylogulcan endotransglucosylases
and hydrolases. Wood, or secondary xylem, is a water conduit
formed from the vascular cambium that provides mechanical
support for plants and is the primary source of chemical feedstock

for the emerging biofuels industry.58,59 The cell wall is composed of
a carbohydrate matrix consisting of cellulose microfibrils that are
embedded within a mixture of hemicellulose and lignin, a polymer
with subunits of phenylpropanoid.60,61 Carbohydrate active en-
zymes (CAZymes) are known components of the construction and
remodeling of the carbohydrate matrix.62 Our proteomics profile
identified several genes encoding CAZymes, concurrent with
results from EST and microarray analysis.63�65

Lignin, the other main constituent of the wood cell wall, is a
complex phenolic polymer that provides a physical barrier that
protects plants from microbial and physical attack and provides
mechanical support. Lignin is polymerized from three primary
monomers: p-coumaryl alcohol (H), coniferyl alcohol (G) and
sinapyl alcohol (S). The monolignols are synthesized from
phenylalanine through the phenylpropanoid pathway and, within
the Populus genome, 95 gene models have been identified as
putative phenylproponoid biosynthesis genes.66 The genetic and
biochemical role of most of the 95 gene models remains
undefined. Our study identified proteins associated with the
monolignol biosynthesis pathway, identifying members for each
enzyme family (Table 2).

3.2. Defining the Boundaries: Interrogation of Unassigned
MS/MS Spectra

3.2.1. Spectral Quality Assessment. Although remarkable
depth of coverage of the Populus proteome has been achieved, one
of the greatest heuristics that contributes to the success of database-
searching approaches also has a complementary limitation: regard-
less of the quality of peptide-derived spectra, algorithms will
only match spectra to peptides that exist within user-defined
sequence variations. Peptide sequencing by mass spectrometry
is most commonly performed via collisional-induced dissocia-
tion (CID), in which peptide ions fragment in a predictable
manner to produce dissociation products that yield sequence

Figure 3. Quantitative distribution of detected proteins by their func-
tional classification. The relative abundance of each functional category
was calculated as a percent of the summed protein group abundance
within each classification: protein groups found in both xylem and
phloem (the core proteome), protein groups found only in phloem, and
protein groups found only in xylem.
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information. Though widely used for its simplicity and effec-
tiveness, more than 50% of MS/MS spectra collected in a
typical shotgun proteomic experiment do not result in high-
confidence peptide identifications when using automated

search algorithms such as SEQUEST or MASCOT. Even
though these low identification rates can be partially explained
by the presence of spectra arising from concurrent fragmenta-
tion of multiple precursor ions, incomplete fragmentation of

Table 2. Protein and Peptide Classification for the Monolignol Biosynthesis Pathwaya

protein
family protein

protein
parsimony seed DU peptides PGU peptides NU peptides

total
peptides

PAL pt017188m Differentiable pt002727m 15 12 14 41
pt002727m Differentiable pt002727m 19 11 12 42
pt026599m Differentiable pt026599m 16 10 12 38
pt011283m Differentiable pt026599m 7 36 11 54
pt011320m Differentiable pt026599m 6 33 9 48

C4H pt030573m Indistinguishable pt009878m 0 31 0 31
pt009878m Differentiable pt009878m 10 16 0 26
pt030574m Indistinguishable pt009878m 0 31 0 31

4CL pt017853m Distinct pt017853m 2 0 0 2
pt038100m Distinct pt038100m 27 0 9 36
pt023497m Distinct pt023497m 7 0 0 7
pt024040m Differentiable pt024040m 4 0 4 8

HCT pt023671m Distinct pt023671m 7 0 3 10
pt038643m Differentiable pt038643m 13 0 3 16

C3H pt002886m Indistinguishable pt002886m 0 2 3 5
pt002890m Indistinguishable pt002886m 0 2 3 5
pt017558m Distinct pt017558m 13 0 4 17

CCoAOMT pt005042m Differentiable pt005042m 8 17 1 26
pt039874m Differentiable pt005042m 4 17 1 22
pt027738m Distinct pt027738m 7 0 4 11

CCR pt005074m Indistinguishable pt004827m 0 2 0 2
pt004953m Indistinguishable pt004827m 0 4 0 4
pt004827m Indistinguishable pt004827m 0 6 0 6
pt005089m Indistinguishable pt004827m 0 2 0 2
pt005064m Indistinguishable pt004827m 0 2 0 2
pt004830m Distinct pt004830m 12 1 1 14
pt039322m Differentiable pt004830m 1 1 0 2
pt004839m Distinct pt004839m 11 0 1 12
pt012284m Distinct pt012284m 2 0 1 3
pt020991m Differentiable pt020991m 2 0 3 5
pt030211m Indistinguishable pt021000m 0 5 0 5
pt021000m Indistinguishable pt021000m 0 5 0 5
pt021032m Distinct pt021032m 1 0 0 1
pt023595m Distinct pt023595m 6 0 3 9
pt023595m Distinct pt023595m 6 0 3 9
pt033373m Differentiable pt033373m 2 1 2 5
pt033727m Indistinguishable pt033373m 0 1 2 3

CAld5H pt032677m Differentiable pt032677m 3 0 6 9
pt025189m Differentiable pt025189m 7 0 5 12

COMT pt000701m Indistinguishable pt000702m 0 4 15 19
pt000702m Indistinguishable pt000702m 0 4 15 19
pt010103m Distinct pt010103m 3 0 0 3
pt015982m Distinct pt015982m 28 0 15 43
pt018020m Indistinguishable pt018020m 0 5 0 5
pt018431m Indistinguishable pt018020m 0 5 0 5
pt020855m Indistinguishable pt020853m 0 3 0 3
pt022214m Indistinguishable pt020853m 0 3 0 3
pt020853m Indistinguishable pt020853m 0 3 0 3
pt020964m Indistinguishable pt020853m 0 2 0 2

CAD pt003155m Distinct pt003155m 1 0 0 1
pt003292m Distinct pt003292m 11 0 0 11
pt004002m Distinct pt004002m 2 0 0 2
pt004753m Distinct pt004753m 31 0 2 33

pt018077m Indistinguishable pt018073m 0 3 0 3
pt018073m Indistinguishable pt018073m 0 3 0 3
pt039056m Distinct pt039056m 8 0 0 8

aA detailed classification of the peptides detected within 10 protein families contributing to lignin biosynthesis. A protein was marked as
distinct, differentiable, or indistinguishable according to its number of database-unique (DU) peptides detected. After reorganizing proteins
into their protein groups, peptide uniqueness was reevaluated for protein-group uniqueness (PGU). The number of nonunique (NU) peptides was
also reported.
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peptides, and chemical noise, a large fraction of peptide-
derived spectra remain unassigned because of the quality
and completeness of the proteome database.42,67

Neither prokaryotic nor eukaryotic protein databases typically
include protein isoforms or alterations/modifications, and further-
more their omission has amore dramatic effect on higher eukaryotes
in which sequence variations and unexpected splice variants are
more prevalent. Thus, by not anticipating the presence of these
peptides, database search algorithms are more likely to interpret
fewer peptide-derived MS/MS spectra when analyzing proteomes
of higher eukaryotes. Reanalysis of unassigned tandemmass spectra
was performed to determine the magnitude of peptide-derived
spectra that remained unmatched to a sequence, thereby providing
the proportion of “missing” peptide identifications in a run.
To compare the rates of peptide-spectrum matching (PSM)

between eukaryotes and prokaryotes, we contrasted MS data from
Populus with a simpler bacterium, Escherichia coli.68 In both cases,
proteolytic peptides were measured on the same instrument using
identical methods to minimize experimental biases. The instru-
mental acquisition and chromatographic distribution of allMS/MS
spectra collected were similar for both organisms (Figure 4A).
However, the ability to successfully match experimental MS/MS
spectra to theoretical database sequences was superior in E. coli. A
greater percentage (86%) of Populus MS/MS spectra remained
unassigned, as compared to only 63% of the MS/MS spectra
collected for E. coli. A closer look at the proportion of unassigned
peptide-derived spectra was used to determine if the observed
discrepancies in peptide identifications could be attributed to the
incompleteness of the reference database. Spectral quality assess-
ment was used to identify the number of unassigned high-quality
spectra, that is, a population of spectra that likely represents
mutated, modified or novel peptides. A conservative set of criteria,
based on previous implementations of spectral analysis,69,70 was
utilized in the assessment of MS/MS spectral quality. A spectrum
was considered highquality if the parent charge statewas calculated
to be greater than +1 and if the spectrum contained three or more
peaks within 20% of the base peak intensity with a minimum
intensity of 2500 counts. Using this approach, we performed an
assessment of MS/MS spectra quality to distinguish high-quality
unassigned spectra from low-quality unassigned spectra in the
representative MS runs from Populus and E. coli. Spectra analysis
revealed that, of the total MS/MS spectra collected for Populus and
E. coli, the percentage of high-quality MS/MS spectra (45%) within
the representative MS run for Populus contained almost twice the
percentage (24%) in the E. coli run (Figure 4B). Nonetheless, the
ability to successfully match the high-quality experimental MS/MS
spectra to database sequences remained more common in E. coli.
A greater percentage of Populus high-qualityMS/MS spectra (77%)
remained unassigned, as compared to only 45% of the high-quality
MS/MS spectra collected for E. coli. Obviously caution must be
exercised not to overinterpret these results, as the level of protein
modifications might be very different in these two cases. Clearly the
use of de novo sequencing and reporter fragment ions (such as those
fromglycopeptides) might provide amore uniform comparison, but
the goal of this initial work was a direct head-to-head comparison of
spectra quality under identical and fairly standard experimental and
computational conditions employed for typical proteome measure-
ments. In total, these results suggest a critical need to evaluate
bioinformatic approaches to rescue the lost, high-quality spectra.
3.2.2. SAAP-Resolved PopulusProteomics.One source of

unassigned high-quality tandem MS spectra may be peptides
containing SAAPs. Populus has an estimated one SNP per 20 base

pairs (unpublished results), while humans have an estimated one
SNP per 1.9 kilobase pairs.71 The biological implication of a SNP
depends on its positional location within the genome and gene
structure. Within coding regions, a SNP can be either synon-
ymous which does not alter the amino acid or nonsynonymous
which results in an amino acid substitution. Detection of SAAPs
not only identifies amino acid changes that have physiochemical
consequences but also reveals information regarding sequence, and
perhaps phenotypic, variability within a proteome. Therefore, a
database containing SNP-based SAAPs and other sequence varia-
tions could be highly informative.
To explore the prevalence of SAAPs, a single MS run from

within the 60 described above was searched against an expanded
Populus database that included a list of tryptic peptides generated
from predicted SAAP variants in the database. With the high
frequency of SAAPs in Populus, over 700000 distinct SAAP posi-
tions and 7200000 new peptides were included in our database. We
found that Populus proteins on average contained 17 SAAPs. When
identifying SAAPs from MS/MS spectra, it is important to differ-
entiate these from post-translational modifications (PTMs) or
peptide modifications generated during sample processing
that result in mass shifts which are isobaric to several amino
acid substitutions. For example, the covalent addition of a methyl
group to a K, R, E, or Q produces a mass shift that is similar to the
following amino acid changes: D to E, S to T, V to I/L, and G to
A. Therefore, all spectra interpreted as both a PTM and a SAAP
should be discarded to lower the identification of false positives.
Certainly, utilization of a higher performance mass spectrometer,
such as an FTICR-MS or an LTQ-Orbitrap, would provide
higher resolution and better mass accuracies to rescue and
differentiate many of these ambiguous SAAP/PTM peptides,
including sample artifacts such as oxidation and deamidation, but
the goal here was to demonstrate that a large eukaryotic genome
database containing extensive SNP information could be suc-
cessfully searched and mined for SAAP information even under
conservative, low resolution mass spectrometric conditions. To
identify a targeted common set of PTMs (Supplemental Table 2,
Supporting Information), MS/MS spectra were analyzed by an

Figure 4. Spectral quality assessment. (A) Comparison of peptide-spec-
trummatching rates betweenE. coli andPopulus. (B)Quantitative assessment
of the proportion of high-quality MS/MS spectra collected versus those
assigned for the representative MS runs from E. coli and Populus.
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automated software tool, InSpecT,72 at a FDR of 2%. In total, 271
spectra that matched to both a PTM and a SAAP peptide were
removed from the analysis. Using conservative search criteria, we
were able to identify a total of 1,354 peptides containing a SAAP
and 201 peptides that become tryptic due to a K or R substitution
(Supplemental Table 3, Supporting Information). Although the
new SAAP peptides account for 2% of high-quality unassigned
spectra, these newly identified peptides correspond to 502
proteins. Among these, we identified 97 proteins that had not
been previously identified. Interestingly, for those proteins
containing a SAAP peptide, their overall peptide coverage
increased by an average 25%.
Due to the widespread distribution of SAAP peptides in the

database, it seems probable that the detected SAAP peptides would
map randomly across the proteome. However, our data suggests
that the detected population of proteins containing a SAAP peptide
map to specific and functionally similar groups. Grouping the SAAP
proteins intoKOGs, the vastmajority of SAAPproteins belonged to
the four specific functional categories: unknown function, signal
transduction, post-translational modification, and carbohydrate
transport and metabolism. Although these functional categories
are among the most abundant categories in phloem and xylem, we
note that other abundant functional categories, such as general
function and translation, do not contain a large number of proteins
containing SAAPs. Therefore, it appears that the overrepresentation
of nonsynonymous substitutions for the aforementioned functional
categories is not a result of their expression levels, but rather that
these proteins are under low selective pressure. Although it is
unclear how many of these proteins represent evolutionary novel-
ties, future comparative proteomics studies may identify expression
patterns that reveal the outcomes of such mutations. In some
instances, the location of these mutations could compromise or
benefit an enzyme: replacing catalytic, binding, or substrate
determining residues with amino acids differing in size,
polarity, or hydrophobicity can either disrupt or modulate
the activity of an enzyme.
For example, when looking at the monolignol biosynthesis

pathway, we identified a SAAP within phenylalanine ammonia

lyase (PAL), the entry enzyme into the phenylproponoid path-
way. As shown in Figure 5, a mass shift of +1 Da and the
experimental b- and y- ion fragmentation pattern coincides with
the predicted SAAP substitution of an asparagine (N) with an
aspartic acid (D) at position 138.While the effect of the observed
polymorphism is unknown, the localization of the substitution
within a few amino acids of the substrate-binding site may impact
the binding of coumarate to the substrate specificity residues.73

Because studies have shown that PAL serves as a regulatory
control point for the entire pathway,74 any mutations compro-
mising or altering the activity of the enzyme will, in fact, impact
the overall lignin content.

’CONCLUSIONS

While it is still unknownwhat percent of the Populus proteome is
expressed given a specific time and tissue, combining tandemmass
spectra from 60MS runs yielded a preview of protein expression in
xylem and phloem. Perhaps one of the most challenging tasks in
proteomic studies of higher eukaryotes is inferring which proteins
are present in a particular sample based on the observed peptides.
An enhanced bioinformatic workflow alleviated some of the
difficulties associated with data interpretation by recasting protein
identifications as protein groups, which have a high degree of
sequence similarity and therefore most likely share similar biologi-
cal roles. The resulting data set provided a more accurate and
informative perspective that allowed us to characterize the land-
scape of protein expression in xylem and phloem.

In addition, to fully characterize the boundaries of assignable
peptides, we assessed spectral quality and found a large portion
of the high-quality spectra remained unassigned. When dealing
with higher eukaryotes such as plants, a major issue for tandem
MS and peptide identification algorithms is the high level of
sequence variation, including naturally occurring PTMs and
SNP-based SAAPs. The exact scope and frequency of these
detectable protein variants has, to our knowledge, never been
reported to date in any plant. By investigating the prevalence of
detectable SAAPs, we provide a glimpse of detectable pro-
teins beyond the “basic” proteome (predicted gene products).

Figure 5. SAAP-resolved peptide identification in PAL. (A) MS/MS spectra of the genomic tryptic peptide (FLNAGIFGNGTESSHTLPR) and the
(B) SAAP tryptic peptide (FLNAGIFGDGTESSHTLPR). (C) Partial amino acid (single letter codes) sequence alignment of P. trichocarpa (PtPAL)
with other members of the phenylalanine ammonia-lyase family (PcPAL, P. Crisum, and AtPAL, A. thaliana). Only the region near the SAAP-containing
peptide is shown. The green box highlights the substrate specificity residues and the yellow box highlights the SAAP position.
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All together, the integration of deep proteome measurement
on an extensive sample set with protein clustering and identifica-
tion of protein sequence variants pioneered a level of proteome
characterization for Populus that has not been possible before.
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