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Lignins are complex phenylpropanoid polymers mostly associated
with plant secondary cell walls. Lignins arise primarily via oxidative
polymerization of the three monolignols, p-coumaryl, coniferyl,
and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that rep-
resent incompletely methylated biosynthetic products (and are not
usually considered to bemonolignols), 5-hydroxyconiferyl alcohol is
now well established as incorporating into angiosperm lignins, but
incorporation of caffeyl alcohol has not been shown.We report here
the presence of a homopolymer of caffeyl alcohol in the seed coats
of both monocot and dicot plants. This polymer (C-lignin) is depos-
ited tohigh concentrations in the seed coatduring the early stagesof
seed development in the vanilla orchid (Vanilla planifolia), and in
several members of the Cactaceae. The lignin in other parts of the
Vanilla plant is conventionally biosynthesized from coniferyl and
sinapyl alcohols. Some species of cacti contain only C-lignin in their
seeds, whereas others contain only classical guaiacyl/syringyl lignin
(derived from coniferyl and sinapyl alcohols). NMR spectroscopic
analysis revealed that the Vanilla seed-coat polymer was massively
comprised of benzodioxane units and was structurally similar to the
polymer synthesized in vitro by peroxidase-catalyzed polymeriza-
tion of caffeyl alcohol. CD spectroscopy did not detect any optical
activity in the seed polymer. These data support the contention that
the C-lignin polymer is produced in vivo via combinatorial oxidative
radical coupling that is under simple chemical control, a mechanism
analogous to that theorized for classical lignin biosynthesis.
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Lignins are abundant phenylpropanoid polymers produced
primarily from oxidative polymerization of three 4-hydroxy-

cinnamyl alcohols differing in their degrees of methoxylation (Fig.
S1). Lignins occur mostly in vessels, tracheids, and fibrous tissues
of vascular plants where they bind, strengthen, andwaterproof cell
walls to providemechanical support, enhancewater transport, and
help ward off pathogens and pests. The biosynthesis and bio-
engineering of cell wall lignins, and their chemical andmechanical
properties, have attracted significant attention because lignin
hinders agro-industrial processes, such as chemical pulping of
woody crops (1), forage digestion by livestock (2), and conversion
of lignocellulosic plant biomass into liquid biofuels (3, 4). In ad-
dition, the variability of biosynthesis, and thereby the structures of
various lignins, is considered to be closely correlated with the di-
versity and evolution of land plants (3, 5–12).
During lignin biosynthesis, the monolignol precursors are

functionalized by aromatic hydroxylation and O-methylation (as
well as successive side-chain reductions) to generate monolignols
differing in their aromatic substitution patterns (Fig. 1A and Fig.
S1). Natural lignins are generally composed of p-hydroxyphenyl
(H), guaiacyl (G), and syringyl (S) units, that are biosynthesized by
polymerization of the three primary monolignols, p-coumaryl,
coniferyl, and sinapyl alcohols, respectively; natural angiosperm
lignins have only low levels (<∼2%) of H-units. Catechyl (C) and
5-hydroxyl guaiacyl (5-OH-G) units that may derive from poly-
merization of the corresponding caffeyl and 5-hydroxy coniferyl
alcohols (Fig. 1A and Fig. S1) are not found in “normal” lignins.

Extensive studies have revealed the essential plasticity of lignin
biosynthesis (6, 10, 12–15), and support the concept that lignin
polymerization results from a combinatorial radical coupling pro-
cess that is under simple chemical control (14, 16, 17). Thus, lignin
monomer composition is largely determined by monolignol avail-
ability and, under certain circumstances, this permits incorporation
of the “unusual”C and 5-OH-Gmonolignols into the polymer. For
example, 5-hydroxyconiferyl alcohol participates in lignification in
various angiosperm plants in which caffeic acid/5-hydroxyconifer-
aldehyde O-methyltransferase (COMT), the key enzyme for con-
version of monolignol precursors from the 5-OH-G to the S
aromatic level (18, 19), is down-regulated. The combination of
a mutation in the gene encoding COMT with overexpression of
ferulate 5-hydroxylase,which catalyzes hydroxylation ofG to5-OH-
G aromatic level precursors, generates lignins largely composed of
5-OH-G units in benzodioxane structures (20, 21). Similarly, down-
regulation of caffeoyl-CoAO-methyltransferase (CCoAOMT), for
conversions from C to G aromatic-level precursors, introduces low
levels (less than 10%) of C units into cell wall lignins in tracheary-
element cultures of the gymnosperm Pinus radiata (22). However,
down-regulation of CCoAOMT in angiosperm species, such as
Arabidopsis, alfalfa, poplar, and tobacco, does not result in the in-
corporation of C units into lignin (23–27), and neither does down-
regulation of both monolignol methylation enzymes (28).
Here we report a lignin in the monocotyledonous angiosperm

Vanilla orchid (Vanilla planifolia) that is naturally biosynthesized
from the unusual C monolignol, caffeyl alcohol. Similar polymers
are found in the seeds of other vanilla species and several species of
cacti (which are dicots). The V. planifolia polymer was structurally
characterized by various chemical methods, 2D NMR spectro-
scopic techniques, and gel-permeation chromatography (GPC).All
evidence indicates that the C-lignin is formed by combinatorial
oxidative radical coupling under simple chemical control, a mech-
anism analogous to that occurring in classic lignification.

Results
Identification of C-Lignin Signatures in V. planifolia. Initial studies on
the lignin of mature beans of the vanilla orchid V. planifolia (Fig.
1C) by thioacidolysis (29, 30) revealed the presence of a small
doublet in the gas chromatography (GC)-MS profile at a retention
time consistent with the catechyl (C) monomer, α,β,γ-trithioethyl-
propylcatechol (Fig. 1B). The beans contained black-coated seeds
(Fig. 1F), and thioacidolysis revealed that the lignin in the isolated
seed coats was entirely composed of C units (Fig. 1H), with
practically no release of α,β,γ-trithioethyl-propylguaiacol, from
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guaiacyl units, nor the syringyl analog (Fig. 1B). In contrast, thio-
acidolysis of the pod residue (after seed isolation), stem, leaf, and
aerial root released normal G and S monomers with essentially no
C monomers, indicating that the lignins present in these tissues
are typical G-rich G/S-lignins (Fig. 1 I–K). C-lignin signatures first
appeared in the seed coat at around 8 wk after pollination (Fig.
S2), when the coat turns from transparent white to brown (Fig. 1
D–F), and at least 2–3mo before the appearance in the pods of the
flavor compound vanillin, which is biosynthetically related to lig-
nin (31). The absolute levels of the C-lignin in the vanilla seed are
substantially higher than the values estimated from the released
thioacidolysis monomers because of the unusual structure of the
polymer (see below).

C-Lignin Signatures in Seeds from Other Plant Species. Similar GC-
MS traces to that shown for theV. planifolia seed coat were obtained
from seed coats of two other Vanilla species, Vanilla pompona and
Vanilla tahitensis. However, C units were not detected in the seed
coats of Phalaenopsis orchid species, nor Asparagus and Agave, two
other members of the monocot order Asparagales, to which Vanilla

belongs. We did, however, observe strong C-lignin signatures in the
seed coats fromseveral species of the familyCactaceae, specifically in
members of the genera Astrophytum,Discocactus, Frailea,Melocatus
(Fig. 1L), Notocactus, Uebelmannia, and Wigginsia. Interestingly,
all these species possessed black-coated seeds (Fig. 1G) that re-
leased only C monomers on thioacidolysis, whereas Mammillaria
(Fig. 1M) and Opuntia species possessed brown seeds that con-
tained normal G/S-lignin. During this limited survey, no seeds
were found that contained both C- and G/S-lignins.

Wet-Chemical and NMR Characterization of V. planifolia Tissues.
Separated tissues from mature V. planifolia were further charac-
terized by wet-chemical methods and by 2D NMR using direct
dissolution/swelling (32, 33). Klason analysis of the seed coat in-
dicated a very high level (∼80%) of acid-insoluble lignin polymer
(Table S1). Butanol-HCl assay (34) did not detect proanthocya-
nidins, which are major components in some seed coats (e.g.,
Arabidopsis andMedicago) (35, 36). Themajority of the remaining
material in the seed coat was crystalline cellulose (16%); very little
noncellulosic sugars (2%) were detected. The chemical compo-
sitions of the pod remaining after seed isolation and the stem
were similar overall (Table S1); these tissues were most rich in
cellulose, with modest levels of hemicellulosic and pectic sugars,
and Klason lignins.
Two-dimensional gel-state NMR spectra of vanilla tissues were

acquiredwith samples prepared by swelling whole-plantmaterials,
after fine milling, in DMSO-d6/pyridine-d5 (4:1, vol/vol) (33) (Fig.
2). The spectra of the pod and stem displayed typical G/S type
lignins with an array of hemicellulosic and pectic sugar units (Fig. 2
B and C; see also Fig. S3 for expanded polysaccharide anomeric
regions). However, the overwhelming signals in the spectrum of
the seed coat were from the C-lignin polymer (Fig. 2A), as evi-
denced by the striking similarity to the spectrum of a synthetic
dehydrogenation polymer (C-DHP) generated by horseradish
peroxidase-catalyzed polymerization of caffeyl alcohol (Fig. 2D).
The aliphatic regions of the spectrum indicated a massive pres-
ence of benzodioxane units V, for which the α-, β-, and γ-corre-
lations from trans-benzodioxane rings Vt, as well as lower-level
contributions from cis-benzodioxane rings Vc, were resolved and
readily assigned by comparison with the data from the synthetic
model dimers (Fig. S4 A and B). Conventional lignin aromatic
signals were practically absent and, instead, the dominant signals
were from C units: compelling confirmation of these assignments
could be made via comparison with the C-DHP and model com-
pounds (Fig. S4 A and B). The benzodioxane polymer in the seed
coat is therefore derived from the polymerization, almost exclu-
sively, of caffeyl alcohol (see Fig. 3D for the mechanism).
Ball-milled vanilla seed coat was also analyzed by normal so-

lution-state NMR via complete dissolution/acetylation using the
DMSO/N-methylimidazole (NMI) solvent system (Fig. S5) (32).
A massive presence of C-lignins was again firmly established by
diagnostic catechyl aromatic signals and benzodioxane units; these
signals were predictably shifted following acetylation and could be
assigned by comparison with the data from acetylated model
dimers andC-DHP (Fig. S4C andD). In addition, the signals from
cellulosic glucans, which were not significant in the gel-state NMR
spectra (Fig. 2) because of the incomplete gelation of crystalline
cellulose (33), were then clearly observed, but the signals from
hemicellulosic and pectic sugars remain practically absent.

NMR Characterization of Isolated C-Lignin from V. planifolia Seed
Coat. Representative fractions enriched in the C-lignin polymer
were isolated in 24% or 16% yield by cellulase treatment of ball-
milled V. planifolia seed coat followed by extraction with DMSO
or with 96% dioxane:water solution (37–39) (Table S1). Solution-
state 13C–1H correlation heteronuclear single quantum coher-
ence (HSQC ) spectra of the isolated fractions in DMSO-d6 indi-
cated successful removal of the polysaccharides and concurrent
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Fig. 1. A C-lignin polymer in plant seeds. (A) Aromatic structures of con-
ventional and novel lignin units (see text and Fig. S1). (B) Diagnostic mono-
meric compounds released via thioacidolysis of guaiacyl (G), syringyl (S), and
catechyl (C) lignin polymers. (C) Mature V. planifolia beans. (D–F) Cross-sec-
tions of V. planifolia beans at 6 (D), 8 (E), and 10 (F) wk postpollination. (G)
Terminal cephalium of Melocactus obtusipetalus, showing mature seed pods
(mp), a senesced seed pod (sp) revealing contents, and individual released
seeds (s). (H–M) Partial total-ion chromatograms of thioacidolysis products
from V. planifolia (H) seed coat, (I) pod (without seed), (J) stem, and (K) leaf,
and (L)Melocactus obtusipetalus, and (M)Mammillaria pilcayensis seed coat.
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enrichment of C-lignin (Fig. S6). The isolated seed-coat lignin was
then acetylated so as to be soluble in chloroform-d, which facili-
tates long-range 13C–1H correlation NMR experiments (e.g.,
heteronuclear multiple bond correlation, HMBC) (40, 41).
The large differences from classical lignins were most readily

visualized from the aromatic regions of HSQC spectra of the
isolated and acetylated seed-coat lignins (Fig. 3A, Left). Volume
integration of the contour signals confirmed that this lignin is
almost exclusively composed of C units; typical G and S lignin
aromatics are virtually nonexistent in this polymer. Other corre-
lations (gray) are currently unassigned, but do not seem to arise
from caffeyl alcohol because they are not seen in the acetylated
C-DHP (Fig. 3B).
High-field HSQC spectra of the side-chain (aliphatic) regions

resolved most of the correlations for the various linkage types,
revealing more clearly the manner in which the monomeric units
are assembled (Fig. 3A, Right). The major contours in the
spectrum were almost identical to those of the C-DHP (Fig. 3B).
Benzodioxanes, resulting from β–O–4-coupling of a monomer
with a caffeyl unit, were the dominant units in both the seed-coat
lignin and C-DHP, accounting for over 98% of the total identi-
fiable dimeric units. The trans/cis compositions of the benzo-
dioxane rings (Vt/Vc) in the seed polymer and C-DHP were
similar (Vt:Vc = 97:3 and 96:4, respectively). The normal acyclic
β-aryl ether units I, which are the predominant linkages in typical
natural lignins, were absent in these polymers. Small amounts of
phenylcoumaran II and resinol III units were present in both
the seed-coat lignin and C-DHP. HMBC experiments revealed
the expected long-range correlations between the side-chain
α-protons and the 1-, 2-, and 6-carbons of the catechyl aromatic

rings in the polymer, supporting the contention that all of these
units derive from caffeyl alcohol (Fig. S7). In addition, at least
four unassigned correlations (colored in pink) were observed in
the spectrum of the seed polymer (Fig. 3A). Because these were
also identified in the spectrum of C-DHP (Fig. 3B), they pre-
sumably represent new structures resulting from radical coupling
reactions of caffeyl alcohol. The isolated stem lignin is, in
contrast, a G-rich G/S type lignin rich in β-aryl ether units I, with
more modest amounts of phenylcoumaran II and resinol III
units, and also with more minor amounts of dibenzodioxocin
units IV (Fig. 3C, and Figs. S6 and S7), as is typical for angio-
sperm stem lignins (40, 41).

Molecular Weights of C-Lignin in V. planifolia Seed Coat. Molecular-
weight distributions of acetylated samples of ball-milled whole V.
planifolia seed coat and extracted C-lignins were determined by
GPC with UV detection (Fig. 4A and Table S2). The molecular-
weight profiles showed broad distributions spanning a range of
up to 105 Da. The number-average degree of polymerization
(DPn, based on the molecular weight of the catechyl benzo-
dioxane internal unit) of the whole seed coat was ∼30. The DPn
of the isolated lignins extracted with DMSO and 96% dioxane:
water solution were ∼18 and 13, respectively. It is likely that the
insoluble fractions that were left after extractions of isolated
seed coat lignins contain C-lignins with higher molecular masses.
As expected from the end-unit analysis (Fig. 3 A and B), the DPn
of the in vitro lignin (C-DHP) was even lower than those of
isolated lignins, ∼8. All these values are comparable to literature
values for various isolated and synthetic lignins (42–44).
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Optical Activity of C-Lignin in V. planifolia Seed Coat.Natural lignins
are optically inactive (45, 46). The optical activity of the isolated
seed-coat lignin was investigated by CD spectroscopy. In addi-
tion, chiral benzodioxane dimers 1a and 1b were separated from
a racemic mixture of synthetic dimer 1 (Fig. S4) by chiral HPLC
and also subjected to CD for comparison (Fig. 4 B and C). The
CD spectrum of the seed-coat lignin indicated no detectable
optical activity, whereas the chiral dimer 1a displayed clear
positive Cotton effects in the region of 240–320 nm under the
same analytical conditions (Fig. 4D). The other enantiomer 1b
had essentially a mirror image spectrum (Fig. 4C). Optical ac-
tivity was readily seen by spiking (46) a preparation of the seed
polymer with as little as 5% of chiral dimer 1a (Fig. 4D). Ben-
zodioxane units in the vanilla seed are therefore, within the limits
of detection by the current method, optically inactive.

Discussion
Seeds of both monocot and dicot species contain previously un-
suspected lignin polymers constructed almost entirely from cat-
echyl (C) units. This C-polymer is a major component of the seed
coat of V. planifolia, whereas the stem, leaf, and aerial root have
only typical angiosperm G/S lignins. Thioacidolysis and 2D-NMR
data clearly indicate that the C-polymer is essentially a homo-
polymer synthesized purely from caffeyl alcohol, and with ben-
zodioxanes as essentially the only intermonomer unit in the

polymer. Based on preliminary thioacidolysis data, similar C-lig-
nins are found in the seed coats of certain cactus species. Our data
so far suggest that lignins present in seed coat of cactus species are
either of the C- or G/S-types, but not both.
It is premature to speculate about the possible distribution of

the C-lignin polymer within the plant kingdom. Currently only
observed in the Asparagales (Orchidaceae) and Caryophyllales
(Cactaceae), it is likely that the polymer has wider distribution, as
it is found in both monocots and dicots. The taxonomy of the
Cactaceae is constantly under revision, but in a recent analysis
Astrophytum (C-lignin in seed) and Mammillaria (G/S-lignin in
seed) are closely related in the same clade (47). This finding
suggests that the formation of C-lignin is not an ancient trait, but
has occurred recently and probably frequently within the plant
kingdom. Thus, the genetic/biochemical mechanisms that allow
for the monolignol pathway to be derailed into production of high
concentrations of caffeyl alcohol are probably relatively simple.
The C-polymer appears in V. planifolia beans at least 2–3 mo

before the appearance of the flavor compound vanillin, which is
synthesized in hair cells within the pod (48) and is likely derived
from an initial phenylpropanoid precursor by side-chain short-
ening (31). The high concentration (>80% by the Klason lignin
method) of C-polymer in the seed coat may imply a lignin-like
structural role in addition to a tannin-like role for seed protection.
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The vanilla seed polymer is strikingly similar to the in vitro
polymer synthesized via peroxidase-catalyzed polymerization
of caffeyl alcohol. Both polymers are massively composed of
benzodioxane units, which are uniquely formed via β–O–4-type
radical coupling of the monomer (at its β-position) with a C-
polymer end-unit (at its 4–O-position) followed by internal
trapping of the quinone methide intermediates (QM) by the
o-hydroxyl (3-hydroxyl) group in the C unit to form the six-
membered ring (Fig. 3D). Similar benzodioxanes were recently
identified in cell cultures of CCoAOMT-deficient P. radiata (22),
and analogous benzodioxanes are products of lignification with
5-hydroxyconiferyl alcohol in COMT-deficient angiosperms (20,
21, 26, 49, 50). As the only β–O–4-type units were benzodiox-
anes, the postcoupling rearomatization of QM seems to be ex-
clusively via the efficient internal trapping by the o-hydroxyl
group in C units (Fig. 3D). The main benzodioxane backbones in
the seed polymer are trans/cis-isomeric mixtures, as in the in vitro
polymer and synthetic dimer, suggesting that the stereochemistry
of postcoupling rearomatization of the QM is under simple ki-
netic chemical control. Therefore, it is most plausible that caffeyl
alcohol is enzymatically oxidized, presumably by plant oxido-
reductases such as peroxidases and laccases initially, but is cross-
coupled onto the growing polymer in a chemically controlled
fashion, independent of enzymes or other proteins, in the same
way as conventional monolignols are during lignin polymeriza-
tion (14, 16, 17).
In conclusion, the identification of this unique polymer pro-

vides compelling evidence for flexibility in the construction of
lignin polymers in nature. The mechanisms that allow for for-
mation of caffeyl alcohol in developing vanilla and cactus seeds,
and the question of whether such catechyl polymers are much
more widespread in nature, remain to be determined. Such
studies might contribute to the development of new avenues in
lignin bioengineering, and may also provide new insights into the
diversity and evolution of land plants.

Materials and Methods
Plant Materials. Mature vanilla beans were provided by Bakto Flavors, sep-
arated into the seed and pod (residue left after seed isolation), and processed
as described in SI Materials and Methods. Vanilla stemmaterial was obtained
from vines growing in the greenhouse at the Noble Foundation, Ardmore,
OK. Seeds of all cactus species were obtained from flowering plants in the
collection of one of the authors (R.A.D.).

Isolations of Vanilla Lignins. Vanilla lignin samples for NMR, GPC, and CD
analyses were prepared via methods largely described previously (22, 33, 39),
and as further described in SI Materials and Methods.

Synthetic Model Dimers. The benzodioxane dimer 1 was synthesized from
radical coupling reactions of caffeyl alcohol via silver carbonate (Ag2CO3)
oxidation, and dimer 2 was via methylation of dimer 1 with methyl iodide;
detailed synthetic protocols and complete NMR and MS spectroscopic data
are described in SI Materials and Methods.

Dehydrogenation Polymer from Caffeyl Alcohol. A dehydrogenation polymer
from caffeyl alcohol (C-DHP) was generated via HRP-catalyzed polymeriza-
tion, as previously described (22, 51, 52), and further outlined in SI Materials
and Methods.

Chemical Analyses. Determination of Klason lignin, crystalline cellulose,
amorphous sugars, protein content, proanthocyanidins and lignin composi-
tion (by thioacidolysis) were as described in SI Materials and Methods.

NMR Spectroscopy. The NMR methods used were largely described previously
(22, 32, 33, 51), and as further described in SI Materials and Methods.

GPC. GPC was performed on a Shimadzu LC-20A LC system (Shimadzu) as
further described in SI Materials and Methods.

Chiral HPLCy. Analytical and preparative chiral HPLC for enantiomeric sepa-
ration of benzodioxane dimer 1 was performed on a Shimadzu LC-20A LC
system as described in SI Materials and Methods.

CD Spectroscopy. CD spectra were run on an Model 202SF CD spectropho-
tometer (Aviv Biomedical) as described in SI Materials and Methods.
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