Greater New Orleans
Hurricane and Storm Damage
Risk Reduction System

Sod Industry Day

Mike Park
Chief
Task Force Hope
U.S. Army Corps of Engineers

September 18, 2014

US Army Corps of Engineers **BUILDING STRONG**®

Hurricane Katrina

Aug 29, 2005

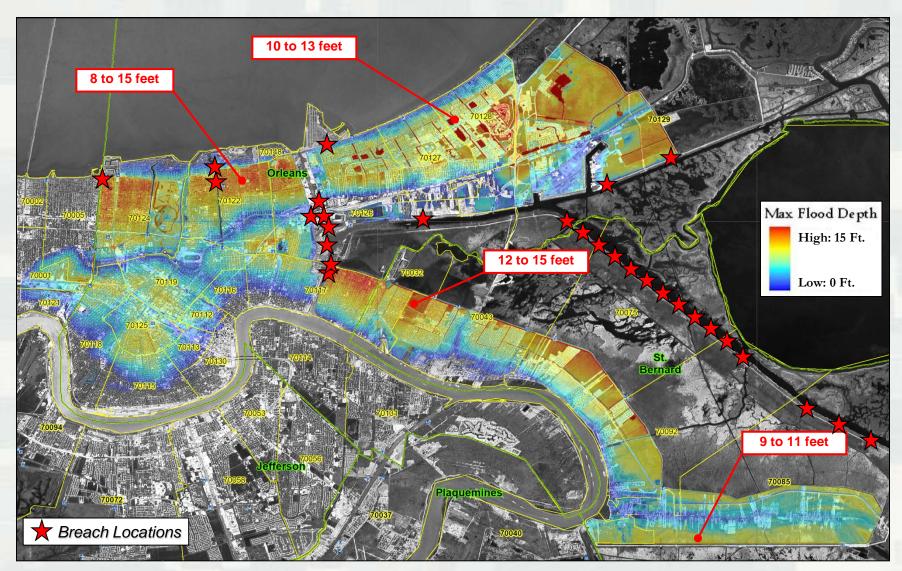
- One of America's largest natural disasters
- Cat 5 less than 12 hrs before landfall
- 127 MPH wind at Louisiana landfall
- Maximum surge of 28 to 30 feet along Mississippi coast
- 80 percent of the city of New Orleans flooded

Hurricane Rita

Sep 24, 2005

- Cat 4 less than 12 hrs before landfall
- 175 MPH max sustained winds in Gulf of Mexico
- 120 MPH max sustained winds at landfall
- Cat 3 strength at landfall

Effects of Hurricane Katrina



Transition Erosion

Levee Erosion

New Orleans Levee and Floodwall Breaches

IPET Findings / Lessons Learned

Findings

- The majority of the 50 levee and floodwall breaches resulted from overtopping and subsequent breaching from scour or scour induced instability.
- For levee breaches, the degree of erosion and breaching was directly related to the character of the in place levee materials
- No levee breaches occurred without overtopping.

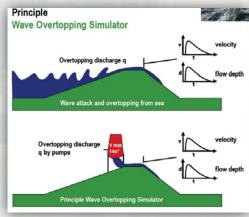
Lessons Learned

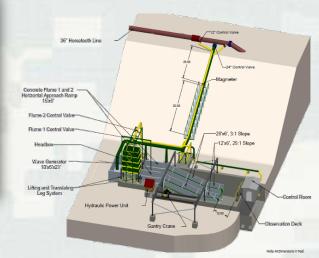
- Design criteria should routinely provide <u>resilience</u> of the structure to reduce vulnerability to breaching.
- While levee resilience is directly related to the quality of levee materials and their emplacement, armoring can augment existing levee materials to provide additional <u>resilience</u>.
- Design methodologies for structures that are a single line of defense for life and safety need to systematically and conceptually consider:
 - Adaptability for changing hazards (e.g., subsidence, wetland loss)
 - 2. Adaptability for future use/needs
 - 3. Redundancy
 - 4. Resiliency
- Losses for a storm that exceeds design criteria can be expected to be significant, but dramatically less if the HSDRRS is resilient to levee and floodwall breaching.

Overtopping Erosion

Authority: 4th Supplemental - P.L. 109-234

"...shall be used for armoring critical elements of the New Orleans hurricane and storm damage reduction system"


<u>Key point:</u> Authority for Armoring is unique to the HSDRRS. No USACE design standards existed to inform Armoring application.


Armoring R&D Program Wave Overtopping Simulation

- Commissioned Colorado State University to erect a full scale wave overtopping simulator
 - Apparatus applied Dutch mobile wave overtopping simulator design to a full scale levee section
 - ▶ Designed to test erosion resistance of alternative Armoring materials for 500-yr HSDRRS overtopping conditions

Colorado State University Wave Overtopping Simulator

Grass Growth & Wave Overtopping Testing at CSU

Sod Industry Day

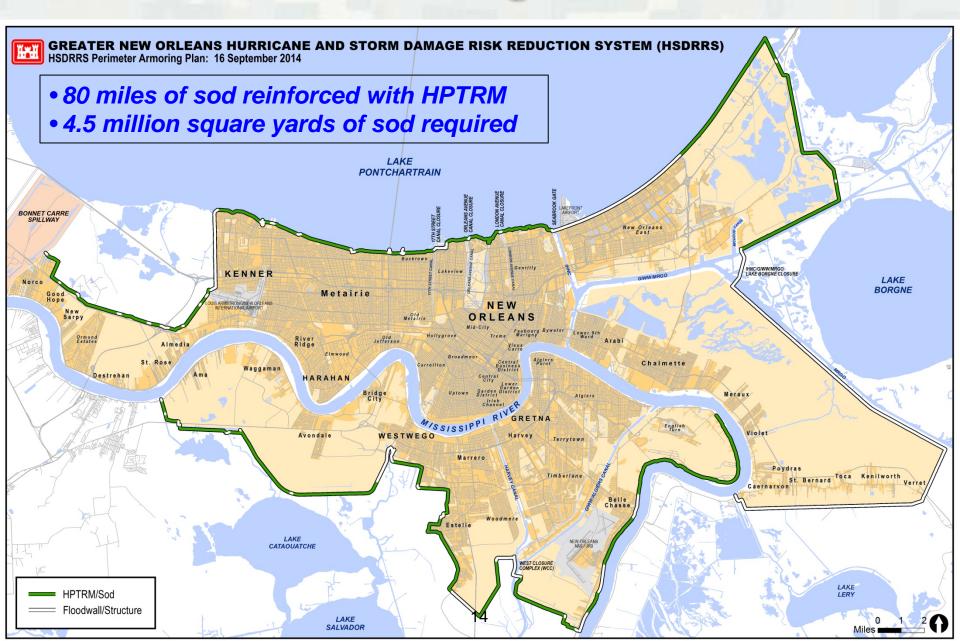
Largest Wave Discharge

Armoring R&D Program

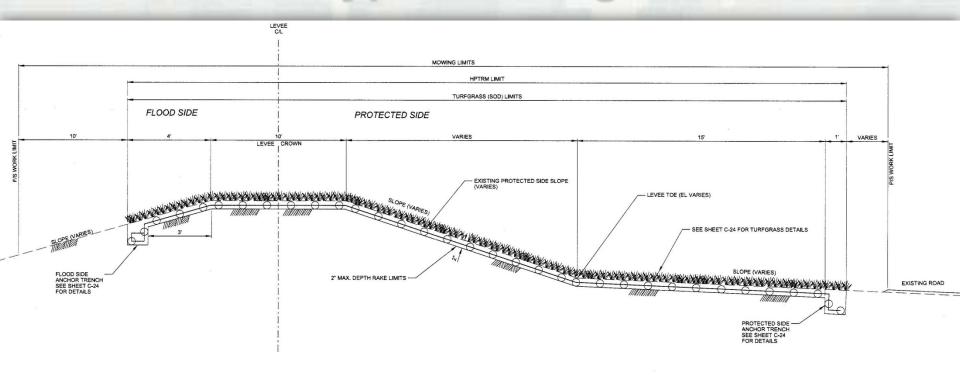
Bermuda Grass Performance Observations

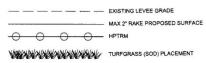
Fall 2010 Testing

 Green Bermuda (unreinforced/reinforced) – survived 4.0 cfs/ft for 3 simulated storm hours


Spring 2011 Testing

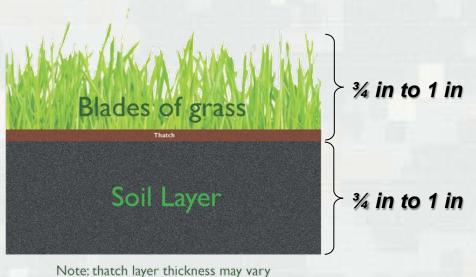
- Dormant Bermuda reinforced w/ HPTRM survived 4.0 cfs/ft for 3 simulated storm hours
- Dormant Bermuda (unreinforced/reinforced w/TRM) failed at 2.0 cfs/ft


*Overtopping rates were progressively raised to assess erosion resistance capabilities of tested materials


**Maximum capacity of the wave overtopping simulator = 4 cfs/ft

Armoring Plan

HPTRM Typical Design Section


NOTE

 SEE "TYPICAL LEVEE HPTRM SECTION" SHEETS FOR DIMENSIONS OF ALL EXISTING LEVEE SECTIONS WITHIN REACH 1A, 1B, 2A, AND 2B.

 TYPICAL LEVEE HPTRM SECTION - 1 SHALL HAVE PROTECTED SIDE HPTRM LIMITS AS SHOWN IN ON SHEET C-19.

3) REFER TO THE TYPICAL NEW ACCESS ROAD - DETAIL ON SHEET C-27 FOR THE P/S WORK LIMIT ALONG NEW ACCESS ROADS.

Bermuda Sod Requirements

Note: thatch layer thickness may vary Soil: fine texture high in silt and/or clay content

Initial Spec:

- Celebration or Tifway 419 Bermuda Sod
- Soil having a Unified Soil Classification System (USCS) classification of silt (ML) or clay (CL) (max. of 30% sand)
- Min. soil thickness of ¾" (up to a max. of 1 inch) to protect the mat from tractor wheels during mowing.
- 2-inch sod facilitates root penetration through the HPTRM to provide adequate anchorage of the mat into the underlying soil.

Overall Material Requirements

SOD

~4,500,000 square yards

HPTRM

~4,500,000 square yards

*Peak installation rate: ~400,000 square yards per month

Sod Industry Day

Armoring Implementation

15 Dec 14 Establish MATOC
 15 Dec 14 Award 1st LPV contract (St. Charles Parish) (100k – 150k sy)
 12 Jan 15 Award 1st WBV contract (Plaquemines Parish) (100k – 150k sy)

Additional contract awards to follow thru spring of 2016 (10,000 – 350,000 square yards required per contract)

Acquisition Plan

20

- Multiple Award Task Order Contract (MATOC)
- Contractor supplied materials
 - ► HPTRM (thru approved sources)
 - ▶ Bermuda Sod
- Fed Biz Opps
 - ► MATOC awardees announced
 - <u>www.FBO.gov</u>

Questions? Contact Public Affairs caitlin.e.campbell@usace.army.mil

Solicitation on FedBizOpps Click Here

