air quality sensors

Visualize Air Quality with RETIGO

By Kayla Schulte

EPA scientists developed  “RETIGO.”

EPA scientists developed “RETIGO.”

Today, more and more researchers and citizens are collecting their own air quality data using lower cost and portable instruments. While air quality monitoring technology has expanded into the hands of the individual with the creation of apps and small mobile sensors, the means to explore the measurements in-depth has been fairly restricted—until now.

EPA scientists recently developed the Real-Time Geospatial Data Viewer, or “RETIGO,” a free, web-based tool that allows users to visualize air quality data derived from any number of monitoring technologies.

RETIGO puts the power of analysis in the user’s hands with its interactive platform and easy-to-navigate interface. The user simply uploads their air quality data to the online tool system to visualize and interact with small to large data sets over space and time. Data collected while driving, riding a bicycle, or walking along a planned route can be explored on a map interface and also shown on several other graphs.

Learn More!
Interested in giving RETIGO a try for yourself? EPA researchers are conducting four training webinars in November where you will be able to learn more, pose questions, and chat with them and other participants. The interactive component will be conducted by both text and audio (you will need to use a computer microphone or connected headset for live audio).

To find out how you can use this innovative visualization tool to explore your measurements and discover how factors such as nearby pollution sources and wind direction can affect your observations, join one of the following webinars:

  • Monday, November 17, 9:00 am to 10:00 am, EST
  • Monday, November 17, 11:00 am to 12:00 pm, EST
  • Wednesday, November 19, 9:00 am to 10:00 am, EST
  • Wednesday, November 19, 3:00 pm to 4:00 pm, EST

Webinar: https://epa.connectsolutions.com/retigotutorial/
Contact: retigo@epa.gov for more information.

Launching RETIGO is just one of the many ways EPA encourages environmental awareness by inviting individuals to explore their surroundings through innovative science. Join use later this month to learn more!

About the author: Kayla Schulte is a Student Services Contractor with EPA’s Air, Climate, and Energy program. She is devoted to communicating pertinent information about the environment to the largest possible audience.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

A New Frontier for Air Sensors 2014

By Dustin Renwick

palm-sized air quality sensor

Compact air quality sensor fits in the palm of your hand.

The wearable market has expanded its product line—from smart glasses and smart watches to dozens of different fitness tracker wristbands and T-shirts that interact with the world around you.

What you don’t see in these gadgets is the tiny technologies that make it possible for your T-shirt to light up or for you to tap your wrist and see how many calories you’ve burned.

Similar to how computers shrunk from the size of rooms to the size of your front pocket, sensors have also been developed in ever decreasing dimensions.

One of the major applications for EPA: sensors that measure air quality. Agency researchers and others can use these portable, real-time sensors in the environment to gain a more intricate picture of what’s happening in our communities.

We’ve hosted a competition won by a design for a wearable sensor that estimates a person’s exposure to air pollution. EPA grants fund broad cookstove research, some of which includes the use of air sensors to measure pollution from indoor cookstoves.

Last fall, EPA collaborators published a seminal paper on the sensor revolution in a top journal, Environmental Science & Technology. The journal received more than 5,400 submissions in 2013 on a variety of topics, and EPA’s research won first runner-up for best feature paper.

One of the most important parts of this field of study is the diversity of people interested in the work.

Next week, we’ll hold an air sensors workshop to spark more discussions and continue this important work advancing innovative air sensor technologies by bringing together scientists, policy experts, technology developers, data analysts, and leaders from government, industry, and community groups.

To learn more about the opportunities and challenges that air sensors present, register for the webcast of our workshop on June 9-10.

We’ll live tweet the event from @EPAresearch using #AirSensors.

About the author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Bringing EPA Research—and Confidence—to the Classroom

By Dana Buchbinder

As an undercover introvert I never imagined myself returning to the chaos of middle school, but this spring I took a deep breath and plunged in. For ten Wednesdays I co-taught an afterschool air science apprenticeship for sixth and seventh graders in Durham, North Carolina. The curriculum, “Making Sense of Air Quality,” was developed and taught by two EPA researchers who have volunteered for the past three years with a not-for-profit educational organization.

Students demonstrate air pollution sensors

Making Sense of Air Quality: students demonstrate the air quality sensors they built.

I joined the ranks of these EPA “Citizen Teachers” to help close the opportunity gap in education. The public middle school where we taught serves students from low income families, with 84% of students eligible for free or reduced lunch programs. 15 students participated in our apprenticeship to learn career skills and become air science experts at their school.

At first it was challenging to relax in front of a room of squirmy kids, but I was surprised by how quickly I adapted to students’ needs. Lessons don’t always go as planned (okay, almost never), but patient teaching in hectic moments inspires students to become more observant scientists. When I could step back and appreciate the weekly progress, I recognized the class’s accomplishments.

The students built air sensors from kits an EPA researcher created for outreach. None of the middle schoolers knew electrical engineering or computer programming when we began, but they learned the foundations of these skills in just a few weeks. I watched one student who had struggled with air pollution vocabulary build a working air sensor from a diagram. Meanwhile, his classmate formulated a hypothesis about how her sensor would react to dust in the air.

We asked students to think like environmental scientists: Where would they choose to place air sensors in a community? How could they share what they learned about air pollution?

They saw air quality sensors in action during our field trip to the Village Green Project, an EPA community air monitor at a Durham County Library. Exploring the equipment gave the apprentices more hands-on practice with science.

In addition to teaching kids about EPA air research, this spring’s apprenticeship focused on two 21st century skills: technology and communicating science. These are career tools for a host of much-needed occupations, but are also vital to advancing research for protecting human health and the environment.

We challenged students to share their new air quality knowledge creatively. They designed posters for a community Air Fair and crafted rhyming “public service announcements” to explain how EPA’s AirNow School Flag Program helps young people stay healthy.

The highlight of the apprenticeship for me was standing back as the students showcased what they learned in a scientific presentation for parents, teachers, and scientists. Nearly 300 people attended this culminating event for all the spring apprenticeships. With remarkable professionalism our class explained figures on poster displays, operated their air sensors, and quizzed the audience with an air quality game.

The guests were impressed by the students’ knowledge and caught their enthusiasm in learning about air quality. Asked if the sensor measured pollen, one student said, “oh no, that’s much too big, we are measuring very tiny particles.” Such responses exhibited scientific thinking, focus, and vastly improved understanding of air pollution.

As Citizen Teachers, we were proud to see even the shyest kids present with confidence. These students reminded me that introverts can share passionately when strongly motivated by the subject. By the end of the apprenticeship I had gained my own confidence as an educator from this young flock of scientists.

About the Author: Dana Buchbinder is a Student Services Contractor in EPA’s Office of Research and Development. She hopes you will attend the upcoming Air Sensors Workshop, where speakers in Research Triangle Park, NC will present on air quality monitoring with students.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.