salmon habitat

Bridge soars over restored Maine river

By Amy Miller

I was driving south on Maine’s coast checking out Down East’s picturesque seaside towns when a bridge appeared through the fog, quite like Oz on the horizon. This was not the covered bridge of a quaint New England town, nor the familiar antiquated railroad bridge. This was a looming modern

The observatory of the Penobscott Narrows Bridge can be reached through the Fort Knox Historic Site.

The observatory of the Penobscott Narrows Bridge can be reached through the Fort Knox Historic Site.

structure more reminiscent of the Zakim Bridge into Boston. The closer we got the more I wondered at the size and stark beauty of this structure.

As it turns out, my husband and I were heading toward the 2,120-foot long Penobscot Narrows Bridge, and for good reason it conjured the Zakim. This 10-year-old bridge is one of only three of its kind in the world: constructed with a cradle system that carries the strands within the stays from bridge deck to bridge deck. The other two bridges of this kind are the Zakim and the Veterans’ Glass City Skyway in Toledo, Ohio.

Towering 420 feet over the town of Bucksport, the bridge’s public observation tower is also the only public bridge observatory in the country and one of four in the world (the others are in China, Slovakia and Thailand). The tallest of the four, it is reached by the fastest elevator in northern New England and gives you 360-degree views of Maine’s coastline, islands and lots of hills and mountains.

But just as impressive as these views is the far less visible but no less superlative accomplishments flowing below the span. The 109-mile Penobscot River tells the story of America’s environmental tragedies, as well as the equally compelling stories of how health and beauty can be restored to our waterways.

The restoration of the Penobscot involved an unprecedented effort to remove two dams and build a state-of-the-art fish bypass around a third. In addition to the Howland Dam bypass, the Milford Dam has a state-of-the-art fish lift installed as part of the restoration project.

A bypass was created for fish around the Howland Dam.

A bypass was created for fish around the Howland Dam.

As a result, hundreds of miles of habitat along the Penobscot and its tributaries have been restored, opening the way for sea-run fish, helping the ecology as well as the communities along the river.

In 1999 when Pennsylvania Power and Light purchased a series of dams in Maine, the company approached the Penobscot Indian Nation and several conservation organizations with the idea of working together to relicense the dams. Four years later the company announced it would remove dams along the lower part of the river while keeping hydropower upriver.

The non-profit Penobscot River Restoration Trust was formed, including the Penobscot Indian Nation and six environmental groups — American Rivers, Atlantic Salmon Federation, Maine Audubon, Natural Resources Council of Maine, The Nature Conservancy and Trout Unlimited, who worked with a variety of state and federal agencies, including EPA, on the restoration project.

The Trust in 2010 purchased the Veazie, Great Works, and Howland dams. The first two were removed and a bypass was created around the Howland Dam in 2015 marking the end of this model restoration program.

Before the 1830s, there were no dams on the Penobscot and Atlantic salmon ran upstream in schools numbering 50,000 or more. Shad and alewives migrated 100 miles upriver. Twenty-pound striped bass and Atlantic sturgeon also swam into the river.

Since the restoration, fish have retraced those routes. The salmon run today is considerably smaller than it had been, but still qualifies as the country’s largest Atlantic salmon run. And the population is likely to grow. As this happens, other wildlife that feeds on migrating fish will also do better.

When the restoration is over, 11 species of sea-run fish will have renewed access to habitat that runs from Maine’s high point on Katahdin down to the bay near the Penobscot Narrows Bridge, though not all the species may make it to Katahdin.

The Penobscot Indians fished for American shad as long as 8,000 years ago and sturgeon 3,000 years ago. The logging, dams, and industry along the river put thousands of years of activity to a stop by the 1950s.

Only a generation ago this river was regarded as one of American’s most endangered. It is now considered one of America’s most significant river-restoration efforts.

As you stand in the observatory, turning to look out in 360 degrees, remember to look down at the Penobscot. Sometimes the biggest changes lurk beneath the surface.

http://maine.gov/mdot/pnbo/

http://bangordailynews.com/2016/06/14/outdoors/hundreds-celebrate-completion-of-penobscot-restoration-project/

http://www.penobscotriver.org/

Amy Miller is in the public affairs office of EPA’s New England office.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

The Algae “Strike Back”: Post Dam Removal Benthic Surveys at the Elwha River Mouth

By Sean Sheldrake, Steve Rubin, and Rob Pedersen

EPA science diver photographs kelp samples on board boat.

EPA diver Rob Pedersen photographs samples.

Some of you may have followed our previous blog posts about EPA’s scientific diving program, including 2011 and 2012 reports from the Elwha River mouth in the Strait of Juan de Fuca.

The field site is downstream from the largest dam removal and restoration project to date, a large scale effort to restore wild salmon habitat and other aspects of the natural ecosystem. (For a great overview of the project, check out the webinar series posted by Olympic National Park.)

In this 2013 installment, we share some interesting findings about our benthic survey on how the dam removal is affecting things at the mouth of the river.

This survey involves counting 72 species of invertebrates and 13 species of algae—all of which are experiencing changes, some dramatic, as a result of the largest dam removal and restoration project to date: an experiment of grand scale for Elwha River mouth seafloor residents!  The survey is led by the U.S. Geologic Survey, and the team includes Washington Sea Grant, the Lower Elwha Klallam Tribe, and EPA divers.

Stationary light sensor placed near the Elwha River mouth.

Stationary light sensor placed near the Elwha River mouth.

Although divers reported seeing fewer algae, the scientists are still crunching the numbers. Early indications suggest a decrease in algae abundance, including the famed, forest-forming “bull kelp” since the removal of the dam. These changes may be due to decreased light levels, a loss of suitable substrate (a growing surface like a rock of some size, or even as small as gravel), or a combination of the two.  The team of divers used light sensors at many stations to help to document whether changes in light penetration were occurring at the dive sites to supplement quantitative data about the changes in the seafloor substrate.

In addition, it seems that tubeworms are on the increase in some areas.

This year, early reports indicate a late growing season for algae, perhaps due to the “silt cloud” hanging over areas near the river mouth. A few surprises may be in the works, too, such as the appearance of the rare kelp species pictured below, a sample the team of scientific divers could not immediately identify underwater—a discovery suggesting that as algae are faced with reduced light levels, a species or two not found during previous surveys might be trying to join the party.

Diver holds kelp sample underwater.

Mystery kelp.

Early suspicions from USGS and other experts narrowed down the mystery alga to either Laminaria ephemera or Laminaria yezoensis, and follow up examination confirmed it to be Laminaria ephemera. The unfolding story was covered in the local Peninsula Daily News.

To answer a few questions you might be wondering about all this:

  • Why does algae matter?
    Answer: Well it’s quite a nursery for young marine life and a grocery store for young and old that live in the sea.  It’s not unusual to see gray whales and their young grazing in the ‘kelp forest.’ Changes for shellfish are also of great importance to local fisheries.  The river is connected to the ocean in so many ways—and the silt keeps coming!
  • What other changes are there?
    Answer: The ongoing study will show changes for nearly 100 species of algae and invertebrates, in addition to fish, for the largest dam removal effort in North America to date.

For more information on the USGS-led study, see: http://www.usgs.gov/elwha, http://pubs.usgs.gov/sir/2011/5120/seaLife/.  For a full set of 2013 photographs, see: Elwha 2013.

Read more about the latest in EPA scientific diving at facebook.com/EPADivers.

About the AuthorsSean Sheldrake is part of the Seattle EPA Dive unit and is also a project manager working on the Portland Harbor cleanup in Oregon.  Sean Sheldrake serves on the EPA diving safety board, responsible for setting EPA diving policy requirements, where Rob Pedersen has served for many years.  In addition, they both work to share contaminated water diving expertise with first responders and others.  Steve Rubin is an aquatic biologist specializing in algal species with the USGS and a lead scientist on the survey.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.