U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information
Upcoming Internet Seminars RSS Feed
Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
December 2016
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
 
 
 

Webinar on the CERCLA 108(b) Financial Responsibility Formula

EPA plans to host an informational public webinar to describe key aspects of the financial responsibility formula included in the proposed financial responsibility requirements under CERCLA § 108(b) for classes of facilities in the hardrock mining industry.

EPA has set up an electronic mailbox for participants to submit questions prior to the webinar, and EPA will seek to respond during the webinar. However, due to the volume of questions anticipated, EPA may not be able to respond to all questions. Please submit any advance questions relating to the financial responsibility formula to: 108bwebinarquestions@epa.gov with the subject line “Formula”. The deadline for submitting advance questions is January 23, 2017. EPA also expects to accept questions during the webinar. Do not submit comments on the rule to this mailbox. The comment period will begin after publication of the proposed rule in the Federal Register. To ensure EPA considers them, comments on the proposed rule must be submitted in accordance with the instructions provided with the published version of the proposed rule in the Federal Register.

Webinar on Proposed Financial Responsibility Requirements under CERCLA § 108(b) for Classes of Facilities in the Hardrock Mining Industry

EPA plans to host an informational public webinar to present an overview of the proposed financial responsibility requirements under CERCLA § 108(b) for classes of facilities in the hardrock mining industry. EPA intends to cover the structure of the proposed rule and outline key background documents that accompany the rule. EPA also expects to discuss the public comment process on the proposed rule.

EPA has set up an electronic mailbox for participants to submit questions prior to the webinar, and EPA will seek to respond during the webinar. However, due to the volume of questions anticipated, EPA may not be able to respond to all questions. Please submit any advance questions to: 108bwebinarquestions@epa.gov with the subject line “108(b) webinar”. The deadline for submitting advance questions is January 3, 2017. EPA also expects to accept questions during the webinar. Do not submit comments on the rule to this mailbox. The comment period will begin after publication of the proposed rule in the Federal Register. To ensure EPA considers them, comments on the proposed rule must be submitted in accordance with the instructions provided with the published version of the proposed rule in the Federal Register.

Hazardous Waste Generator Improvements Final Rule

EPA recently overhauled the hazardous waste generator regulations under the Resource Conservation and Recovery Act (RCRA) to improve compliance and thereby enhance protection of human health and the environment. These changes are both a result of EPA's experience in implementing and evaluating the hazardous waste generator program over the last 30 years, as well as a response to concerns and issues identified by the states and regulated community. This webinar will delve into the recent changes and describe in detail:

  • Which components of the hazardous waste generator regulatory program were revised;
  • Which gaps in the regulations were addressed in this rule;
  • The greater flexibility provided by this rule for hazardous waste generators to manage their hazardous waste in a cost-effective and protective manner;
  • How the hazardous waste generator regulations were reorganized to make them more user-friendly and thus improve their usability by the regulated community; and
  • What technical corrections and conforming changes were made to address inadvertent errors, remove obsolete references to programs that no longer exist, and improve the readability of the regulations.
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


Soil Sampling and Decision Making Using Incremental Sampling Methodology - Parts 1 and 2

Interstate Technology Regulatory Council When sampling soil at potentially contaminated sites, the goal is collecting representative samples which will lead to quality decisions. Unfortunately traditional soil sampling methods don't always provide the accurate, reproducible, and defensible data needed. Incremental Sampling Methodology (ISM) can help with this soil sampling challenge. ISM is a structured composite sampling and processing protocol that reduces data variability and provides a reasonable estimate of a chemical's mean concentration for the volume of soil being sampled. The three key components of ISM are systematic planning, field sample collection, and laboratory processing and analysis. The adequacy of ISM sample support (sample mass) reduces sampling and laboratory errors, and the ISM strategy improves the reliability and defensibility of sampling data by reducing data variability.

ISM provides representative samples of specific soil volumes defined as Decision Units. An ISM replicate sample is established by collecting numerous increments of soil (typically 30 to 100 increments) that are combined, processed, and subsampled according to specific protocols. ISM is increasingly being used for sampling soils at hazardous waste sites and on suspected contaminated lands. Proponents have found that the coverage afforded by collecting many increments, together with disciplined processing and subsampling of the combined increments, yields consistent and reproducible results that in most instances have been preferable to the results obtained by more traditional (e.g. discrete) sampling approaches.

This 2-part training course along with ITRC's web-based Incremental Sampling Methodology Technical and Regulatory Guidance Document (ISM-1, 2012) is intended to assist regulators and practitioners with the understanding the fundamental concepts of soil/contaminant heterogeneity, representative sampling, sampling/laboratory error and how ISM addresses these concepts. Through this training course you should learn:

  • basic principles to improve soil sampling results
  • systematic planning steps important to ISM
  • how to determine ISM Decision Units (DU)
  • the answers to common questions about ISM sampling design and data analysis
  • methods to collect and analyze ISM soil samples
  • the impact of laboratory processing on soil samples
  • how to evaluate ISM data and make decisions

In addition this ISM training and guidance provides insight on when and how to apply ISM at a contaminated site, and will aid in developing or reviewing project documents incorporating ISM (e.g., work plans, sampling plans, reports). You will also be provided with links to additional resources related to ISM.

The intended users of this guidance and training course are state and federal regulators, project managers, and consultant personnel responsible for and/or directly involved in developing, identifying or applying soil and sediment sampling approaches and establishing sampling objectives and methods. In addition, data end users and decision makers will gain insight to the use and impacts of ISM for soil sampling for potentially contaminated sites.

Recommended Reading: We encourage participants to review the ITRC ISM document(http://www.itrcweb.org/ISM-1/) prior to participating in the training classes. If your time is limited in reviewing the document in advance, we suggest you prioritize your time by reading the Executive Summary, Chapter 4 "Statistical Sampling Designs for ISM," and Chapter 7 "Making Decisions Using ISM Data" to maximize your learning experience during the upcoming training classes.

Groundwater Statistics for Environmental Project Managers

Interstate Technology Regulatory Council Statistical techniques may be used throughout the process of cleaning up contaminated groundwater. It is challenging for practitioners, who are not experts in statistics, to interpret, and use statistical techniques. ITRC developed the Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013, http://www.itrcweb.org/gsmc-1/) and this associated training specifically for environmental project managers who review or use statistical calculations for reports, who make recommendations or decisions based on statistics, or who need to demonstrate compliance for groundwater projects. The training class will encourage and support project managers and others who are not statisticians to:

ITRC's Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013) and this associated training bring clarity to the planning, implementation, and communication of groundwater statistical methods and should lead to greater confidence and transparency in the use of groundwater statistics for site management.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf


ITRC also offers a 2-day PVI focused classroom training at locations across the US. The classroom training provides participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Learn more at the ITRC PVI classroom training page.

Geospatial Analysis for Optimization at Environmental Sites

Interstate Technology Regulatory Council Optimization activities can improve performance, increase monitoring efficiency, and support contaminated site decisions. Project managers can use geospatial analysis for evaluation of optimization opportunities. Unlike traditional statistical analysis, geospatial methods incorporate the spatial and temporal dependence between nearby data points, which is an important feature of almost all data collected as part of an environmental investigation. The results of geospatial analyses add additional lines of evidence to decision making in optimization opportunities in environmental sites across all project life cycle stages (release detection, site characterization, remediation, monitoring and closure) in soil, groundwater or sediment remediation projects for different sizes and types of sites.

The purpose of ITRC's Geospatial Analysis for Optimization at Environmental Sites (GRO-1) guidance document and this associated training is to explain, educate, and train state regulators and other practitioners in understanding and using geospatial analyses to evaluate optimization opportunities at environmental sites. With the ITRC GRO-1 web-based guidance document and this associated training class, project managers will be able to:
  • Evaluate available data and site needs to determine if geospatial analyses are appropriate for a given site
  • For a project and specific lifecycle stage, identify optimization questions where geospatial methods can contribution to better decision making
  • For a project and optimization question(s), select appropriate geospatial method(s) and software using the geospatial analysis work flow, tables and flow charts in the guidance document
  • With geospatial analyses results (note: some geospatial analyses may be performed by the project manager, but many geospatial analyses will be performed by technical experts), explain what the results mean and appropriately apply in decision making
  • Use the project manager’s tool box, interactive flow charts for choosing geospatial methods and review checklist to use geospatial analyses confidently in decision making

Long-term Contaminant Management Using Institutional Controls

Interstate Technology Regulatory Council Institutional controls (ICs) are administrative or legal restrictions that provide protection from exposure to contaminants on a site. When ICs are jeopardized or fail, direct exposure to human health and the environment can occur. While a variety of guidance and research to date has focused on the implementation of ICs, ITRC’s Long-term Contaminant Management Using Institutional Controls (IC-1, 2016) guidance and this associated training class focuses on post-implementation IC management, including monitoring, evaluation, stakeholder communications, enforcement, and termination. The ITRC guidance and training will assist those who are responsible for the management and stewardship of Ics. ITRC has developed a downloadable tool that steps users through the process of planning and designing IC management needs. This tool can help to create a long lasting record of the site that includes the regulatory authority, details of the IC, the responsibilities of all parties, a schedule for monitoring the performance of the IC, and more. The tool generates an editable Long Term Stewardship (LTS) plan in Microsoft Word.

After attending the training, participants will be able to:
  • Describe best practices and evolving trends for IC management at individual sites and across state agency programs
  • Use this guidance to
    • Improve IC reliability and prevent IC failures
    • Improve existing, or develop new, IC Management programs
    • Identify the pros and cons about differing IC management approaches
  • Use the tools to establish an LTS plan for specific sites
  • Use the elements in the tools to understand the information that should populate an IC registry or data management system.

The target audience for this guidance includes environmental regulators at all levels of government, private and public responsible or obligated parties (Ops), current site owners and operators, environmental consultants, and prospective purchasers of property and their agents. Other stakeholders who have an interest in a property can also use this guidance to help understand how to manage Ics.

Remedy Selection for Contaminated Sediments

Interstate Technology Regulatory Council The sediments underlying many of our nation’s major waterways are contaminated with toxic pollutants from past industrial activities. Cleaning up contaminated sediments is expensive and technically-challenging. Sediment sites are unique, complex, and require a multidisciplinary approach and often project managers lack sediments experience. ITRC developed the technical and regulatory guidance, Remedy Selection for Contaminated Sediments (CS-2, 2014), to assist decision-makers in identifying which contaminated sediment management technology is most favorable based on an evaluation of site specific physical, sediment, contaminant, and land and waterway use characteristics. The document provides a remedial selection framework to help identify favorable technologies, and identifies additional factors (feasibility, cost, stakeholder concerns, and others) that need to be considered as part of the remedy selection process. This ITRC training course supports participants with applying the technical and regulatory guidance as a tool to overcome the remedial challenges posed by contaminated sediment sites. Participants learn how to:
  • Identify site-specific characteristics and data needed for site decision making
  • Evaluate potential technologies based on site information
  • Select the most favorable contaminant management technology for their site
For reference during the training class, participants should have a copy of Figure 2-1, Framework for Sediment Remedy Evaluation. It is available as a 1-page PDF at http://www.cluin.org/conf/itrc/ContSedRem/ITRC-SedimentRemedyEvaluation.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites Website (CS-1, 2011) and associated Internet-based training that assists state regulators and practitioners with understanding and incorporating fundamental concepts of bioavailability in contaminated sediment management practices.

Issues and Options in Human Health Risk Assessment - A Resource When Alternatives to Default Parameters and Scenarios are Proposed

Interstate Technology Regulatory Council Many state and local regulatory agencies responsible for the cleanup of chemicals released to the environment have adopted regulations, guidance and policies that define default approaches, scenarios, and parameters as a starting point for risk assessment and the development of risk-based screening values. Regulatory project managers and decision makers, however, may not have specific guidance when alternative approaches, scenarios, and parameters are proposed for site-specific risk assessments, and are faced with difficult technical issues when evaluating these site-specific risk assessments. This ITRC web-based document is a resource for project managers and decision makers to help evaluate alternatives to risk assessment default approaches, scenarios and parameters.

ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk Assessment (RISK-3, 2015) guidance document is different from existing ITRC Risk Assessment guidance and other state and federal resources because it identifies commonly encountered issues and discusses options in risk assessment when applying site-specific alternatives to defaults. In addition, the document includes links to resources and tools that provide even more detailed information on the specific issues and potential options. The ITRC Risk Assessment Team believes that state regulatory agencies and other organizations can use the RISK-3 document as a resource or reference to supplement their existing guidance. Community members and other stakeholders also may find this document helpful in understanding and using risk assessment information.

After participating in this ITRC training course, the learner will be able to apply ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk (RISK-3, 2015) document when developing or reviewing site-specific risk assessments by:
  • Identifying common issues encountered when alternatives to default parameters and scenarios are proposed during the planning, data evaluation, toxicity, exposure assessment, and risk characterization and providing possible options for addressing these issues
  • Recognizing the value of proper planning and the role of stakeholders in the development and review of risk assessments
  • Providing information (that includes links to additional resources and tools) to support decision making when alternatives to default approaches, scenarios and parameters are proposed
ITRC offers additional documents and training on risk management. ITRC's Use of Risk Assessment in Management of Contaminated Sites (RISK-2, 2008) and associated Internet-based training archive highlight variation of risk-based site management and describes how to improve the use of risk assessment for making better risk management decisions. ITRC's Examination of Risk-Based Screening Values and Approaches of Selected States (RISK-1, 2005) and associated Internet-based training archive focus on the process by which risk-based levels are derived in different states.