

Quantification of Agricultural Emissions Andrew Neuman

Agriculture that feeds the world affects climate, air quality and stratospheric ozone

Crop Fertilization

Animal Husbandry

Fertilizer made from synthesized Ammonia

Ammonia: emitted from fertilized fields,

leads to particle formation

Air quality and climate

Nitrous oxide: emitted from fertilized fields

increase mostly from agricultural intensification

Climate and stratospheric ozone

Concentrated animal feeding operations

Methane: emitted from animal digestion and manure *emissions from ruminants ≈ fossil fuels*

Ammonia: emitted from animal waste

CSD's response: develop techniques to quantify variable ammonia, nitrous oxide, methane emissions

Large uncertainties in agricultural emissions

Example: CSD's Calnex 2010 study, NOAA WP-3 aircraft flights over agriculture

Area-wide agricultural emission fluxes quantified and compared to inventories:

Ammonia: Large fluxes from dairies
Underestimated by emission inventories
(Nowak et al., GRL, 2012)

Nitrous oxide: Large fluxes from agriculture Underestimated by emission inventories (Xiang et al., JGR, 2013)

Methane: Large fluxes from rice cultivation Underestimated by emission inventories (Peischl et al., JGR, 2012)

• Motivation: Accurate emission information required to predict AQ and climate change

• Findings: Observed fluxes typically 3x larger than inventories

Response: Extend observations to capture temporal and spatial variability

CSD's new mobile platform for extended observations

Instrumented 15-passenger 2-passenger van to quantify agricultural emissions

Versatile and powerful infrastructure

- Operate instruments for hours on battery power
- Seamless transition between power sources allows long duration, continuous measurement
- Easy to reconfigure for new instruments
- Detailed characterization of emission sources

Current payload (commercial and custom)

- nitrous oxide
- methane
- ammonia
- CO, CO₂
- NO, NO₂, NOy
- ozone
- bio-aerosol

First results: Ammonia and methane from feedlots in NE Colorado

Experiment:

Drive around several feedlots repeatedly
Diurnal variability
(in collaboration with Princeton U., Aerodyne)
Seasonal variability

30,000 cattle

Large (!) mixing ratios

Use enhancement ratios to compare with inventories

- Critical to assess inventories and resolve discrepancies with observations
- Ammonia to methane emissions ratio vary with temperature and time of day

Future directions for CSD's mobile van

- Quantify emissions flux to the atmosphere:
 - incorporate remote sensing or UAS to determine winds aloft and boundary layer height
 - vertical wind measurements, tracer release
- Partner with industry to identify practices that reduce emissions
 - fertilizer lost to the atmosphere = \$ lost
- Valuable platform for testing and deploying new instrumentation