

Attributing and quantifying methane emissions in a megacity Jeffrey Peischl

Methane (CH₄) couples climate and air quality

- 2nd-most important greenhouse gas (GHG) and a short-lived climate forcer with complex sources
- ozone precursor important globally [Fiore et al., 2002]

3 of 4 source sectors highlighted in the **President's Climate Action Plan – Strategy to Cut Methane Emissions** are located in the Los Angeles Basin:

- landfills
- coal mines

- agriculture
- oil and gas systems

1/4 of California CH₄ comes from the Los Angeles megacity, but **top-down assessments** suggest substantial shortfalls in existing inventories of CH₄ in Los Angeles:

35-57% [Wunch et al., 2008]

30% [Hsu et al., 2009]

CSD led the **2010 CalNex field project**; one goal was to improve the California GHG emissions inventory

Attributing and quantifying methane emissions in a megacity

1. Methane emissions from Los Angeles derived from observations still greater than expected from inventories

Wennberg et al. [2013] reported a 50% CH₄ inventory shortfall, Peischl et al. [2013]

reported 33%

 NOAA P-3 data show few individual CH₄ sources stand out in L.A. Basin; instead, CH₄ enhancements indicate a complex mix of sources

Los Angeles Basin

2. CSD used light alkane source fingerprints to determine sources of CH₄ in Los Angeles

- the suite of C₂–C₅ alkane data provides essential information to attribute CH₄ emissions to sources
 - e.g., atmospheric data indicate local wells are a significant source of propane and ethane to the L.A. atmosphere

Attributing and quantifying methane emissions in a megacity

3. Methane source apportionment used to critically evaluate California's GHG inventory

• The majority of CH₄ is due to leaks from pipeline dry natural gas (NG)/local seeps and landfills

- Leaks from pipeline dry NG/local seeps and local NG account for the top-down vs. bottom-up discrepancies in CH₄
- Model-independent attribution of CH₄ to specific sources
- Generally applicable to other regions and cities

Attributing and quantifying methane emissions in a megacity

4. Future CSD applications:

 technique applied to SENEX & SONGNEX data sets to distinguish methane emission contributions from oil production, natural gas production, and natural gas distribution

A possible technique for the world's cities:

Required measurements:

 CH_4 provides a relative attribution to identify which sources to focus on first

whole air sample

Requirements:

Nominal sampling strategy: New York City example

This apportionment technique is a powerful tool that can be used in future field studies and by other organizations to provide a benchmark for future top-down analyses