

CSD has taken lead in quantifying concentrations of O₃ transported to the US from the North Pacific:

- Equals a large fraction of the National Ambient Air Quality Standard (NAAQS)
- Has been increasing over past 3 decades

Important for Air Quality - Accurate background O₃ simulations by chemistry-climate models (CCMs) can inform policy formulation (e.g., EPA proposal to lower NAAQS to 65 – 70 ppbv range)

- Standards set to protect health and well-being, but..
- What fraction is contributed by transported background O₃?

Important for climate - radiative forcing calculations require accurate CCMs to quantify long-term changes in tropospheric O₃

CSD has taken lead in quantitatively assessing the accuracy of CCM simulations of tropospheric O₃

Parrish et al., *ACP*, 2012 Parrish et al., *GRL*, 2013 Parrish et al., *JGR*, 2014

Goals of this research:

Quantitatively Compare model results with measurements

Effect significant model improvements

CSD approach:

Identify most important issues to investigate – policy significance and insight to model performance

- Long-term changes in tropospheric O₃
- Seasonal cycles of tropospheric O₃

Collaborate with measurement folks:

~ 575 years of data from ~ 29 sites!

Collaborate with modelers: 3 CCMs used in AR5

- CAM-chem National Center for Atmospheric Research
- GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory
- GISS-E2-R NASA Goddard Institute of Space Studies

Develop and Apply quantitative techniques for comparisons

Yield Comparison Metrics that can be efficiently used in future comparisons

Long-term changes in tropospheric O₃

Bottom line: Parrish et al. [2014] show that Models:

- Overestimate background O₃ concentrations
- Capture only ~ one-half of average annual changes, none of seasonal variation

Implications:

- Cannot accurately apportion sources of North American O₃
- Inaccurate estimates of trends in background O₃ transported to North America.
- Inaccurate estimates of radiative forcing of tropospheric O₃.

Long-term changes in tropospheric O₃

CSD Approach to Model Improvement:

Improve CCM inventories –
 Emission input is not accurate,
 Model output cannot be accurate.

Hassler et al., 2015, in preparation

(NOx to CO ratio is proxy for NOx to VOC ratio, which controls pollution photochemistry)

O₃ Seasonal cycles in the marine troposphere

Parrish et al., 2015, in preparation

Importance:

- Environment upwind from US.
- Limited precursor sources and simplified chemistry
- Best model performance may be expected?

Bottom line - Models

- Fail to properly isolate MBL.
- Cannot properly balance O₃ production and loss

Implication: We cannot accurately apportion sources of North American O₃.

CSD Approach to Model
Improvement: Investigate model
MBL structure and dynamics

Future work:

Quantitatively compare model results with measurements; develop quantitative comparison metrics for future comparisons

Effectively communicate with model developers – Follow through on model improvements – Shared post-doc

Focus on specific processes in CCM treatment of transport and processing of O₃ precursors

Our past and future field campaigns (e.g., NASA ATom) provide essential resource for these comparisons

Planned NASA ATom flights