

FY-2014 Results - and Their Importance

Alex R. Larzelere

Federal Program Manager, Modeling and Simulation Energy Innovation Hub Office of Nuclear Energy U.S. Department of Energy

December 10, 2014

Understanding Complex Physical Processes

The Value of Adding of Modeling and Simulation

For Example – Automotive Crash Testing

Credit: http://www.rtt.ag/en/work/references/advanced-study-of-crash-test-simulations

Modeling and Simulation Results Provides the Ability to:

- Stop/slow time
- Make parts translucent
- Quantify parameters of interest
- Create a detailed understanding of "how" things happened during the crash

Verification, validation, and uncertainty quantification is always critical

In Many Ways, Simulation of PWR is Even More Challenging

Core

- 11.1' diameter x 12' high
- 193 fuel assemblies
- 107.7 tons of UO₂ (~3-5% U₂₃₅)

Fuel Assemblies

- 17x17 pin lattice (14.3 mm pitch)
- 204 pins per assembly

Fuel Pins

 ~300-400 pellets stacked within 12' high x 0.61 mm thick Zr-4 cladding tube

Fuel Pellets

• 9.29 mm diameter x ~10.0 mm high

Fuel Temperatures

- 4140° F (max centerline)
- 657° F (max clad surface)

~51,000 fuel pins and over 16M fuel pellets in the core of a PWR!

CASL Started by Asking Industry to Identify Their Challenge Problems

Improve Industry's Ability to Address Performance & Safety Challenge Problems

For Each Challenge Problem Apply DAKOTA using Coupled Tools for UQ

PEREGRINE2D - grid to rod gap, STAR/HYDRA-

TH excitation force

Predict Mixing & DNB with CFD using STAR/HYDRA-TH

That Information Led to the Creation of a Modular and Flexible Architecture

Virtual Environment for Reactor Applications (VERA)

Overall FY-2014 Was a Busy Year for CASL

- Demonstration of neutronics coupled to thermal-hydraulics for a full-core scenario using VERA.
 - Target: September 2013 Completed in December 2013
- VERA Deployment for EPRI Test Stand on PCI
 - Target: December 2013 Completed on Time
- PWR Full Core 2D Depletion Capability with Pin Resolved Transport
 - Target: December 2013 Completed on Time
- User Guidelines and Best Practices for CASL UQ Analysis using DAKOTA
 - Target: March 2014 Completed on Time
- Experience with use of VERA in Industry Test Stands
 - Target: March 2014 Completed on Time
- Assessment of CASL Engineering Wear Model Against Experimental Fretting Measurements
 - Target: June 2014 Completed on Time
- Assess Peregrine as a 3D Fuel Performance Model for the PCI Challenge Problem
 - Target: July 2014 Completed on Time

- Demonstrate integrated VERA-CS for the PCI Challenge Problem
 - Target: August 2014 Completed on Time
- Demonstration of Integrated DA/UQ for VERA-CS on a Core Physics Progression Problem
 - Target: August 2014 Completed on Time
- Single Phase Validation of Hydra-TH for Fuel Applications
 - Target: August 2014 Completed on Time
- Implementation of Operational Reactor
 Depletion Analysis Capability with TH Feedback
 - Target: September 2014 Completed on Time
- Demonstration of Coupled CFD and Crud/Corrosion Chemistry for a Fuel Sub-region
 - Target: September 2014 Completed on Time
- Demonstration of Atomistically-informed Multiscale Zr Alloy Deformation Models in Peregrine for Normal Operation and Accident Scenarios
 - Target: September 2014 Completed on Time

In addition, CASL internally tracked about 100 other L2, L3, & L4 milestones

Demonstration of the VERA Core Simulator (VERA-CS)

■ FY13.CASL.011

 Demonstrated the modeling of a full Pressurized Water Reactor (PWR) core with a multiphysics coupling of neutronics (including cross section and neutron transport) and thermalhydraulics

■ Importance

 Pin and sub-channel resolved core simulator that will be used to generate detailed understanding of conditions for the on-set of operational performance and safety issues

Report on Test Stands Experience

Westinghouse Test Stand

TVA Test Stand

■ FY14.CASL.004

- Milestone reports the experiences setting up computational "Test Stands"
- Test Stands then used by industry partners for their own defined problems

- Demonstrates CASL's commitment to deployment of its tools to industry users
- Developed lessons learned and best practices for future deployments of CASL modsim tools into industry environments

Application of VERA Thermal Hydraulics to Accident Conditions

Large Break Loss of Coolant **Accident Coolant Temperature** Reactivity Insertion Accident Initial **DNBR Time Step End of Transient**

■ F&14.CASL.007

- Milestone reported the use of the COBRA-TH codes by Westinghouse to understand their potential applicability to simulate reactor accident conditions
- Also the use of Hydra-TF for fine grain turbulence and single phase subassembly mixing

- Showed the use of CASL tools to simulate transient, accident conditions
- Also, demonstrated the use of CASL tools by industry expert users

Simulating Pellet Clad Interface (PCI)

■ FY14.CASL.008

- Demonstrated integrated VERA-CS for the PCI challenge problem
- Performed multiple assembly simulation of coupled CTF/Insilico/BISON-CASL that computes figures of merit for PCI analysis.

■ Importance

following

- Required runtime coupling of neurtronics, thermal hydraulics, and fuel performance codes
- Tool to be used to develop improved understanding of PCI, which is often a limiting factor for reactor power ramp-up and load

Cladding Hoop

Stress (Pa)

■-6.00E+007--4.00E+007

End to End Implementation of Verification and Validation Processes

■ FY14.CASL.009

 Demonstration of integrated Data Analysis/Uncertainty Quantification (DA/UQ) for VERA-CS on a core physics progression problem

- First demonstration by CASL of the full process of verification, validation, and uncertainty quantification using the Predictive Capability Maturity Model (PCMM)
- Clarified the details of the process and the resources people, experimental data, computational) needed to execute

Implementation of Depletion in MPACT Neutron Transport Code

■ FY14.CASL.011

 Implementation of operational reactor depletion analysis capability with thermal-hydraulics feedback

- MPACT is being developed primarily by the University of Michigan
- Uses Methods of Characterization (MOC) to resolve neutron transport for circular fuel pins
- With depletion, VERA-CS is now able to load follow operational reactors. Watts Bar 1 data comparison (boron concentration) excellent.

Coupled CFD and **CRUD/Corrosion Chemistry**

Chemistry

No Surface

With Surface Chemistry

■ FY14.CASL.012

 Demonstration of Coupled Computational Fluid Dynamics (CFD) and CRUD/Corrosion Chemistry for a Fuel Sub-region

- CRUD is a fundamentally fuel pin level phenomena both axially and azimuthally
- This demonstration provides an initial capability that embeds surface chemistry with CFD to provide a detailed understanding of the impact of flow rates and turbulence on the formation (and erosion) of CRUD/Corrosion

Implementation of Visco-Plastic Self-Consistent (VPSC) in BISON-CASL

■ FY14.CASL.013

 Demonstration of atomisticallyinformed multiscale Zr alloy deformation models in BISON-CASL for normal operations and accident conditions

- Implementation of VPSC in BISON-CASL (formerly known as Peregrine) so as to model important manufacturing details needed to understand how cladding shape evolves as influenced by radiation
- Improved understanding will lead to better management of performance and safety margins

FY-2014 Was an Important Year for CASL

- CASL results this year build on a solid foundation
- VERA-CS maturing to the point of being ready for broad distribution in late FY-15
- Proactively assigned leadership roles to partners across the CASL organization
- Implemented an innovative mix of collaboration technologies and geographic co-location works to create a cohesive team
- Utilized sound program management practices

- In addition to all these accomplishments, CASL also completed their application for renewal to continue to Phase 2
- Phase 2 will focus on broadening and deepening Phase 1 deliverables
- They defined a new set of challenge problems
 - Involving the CASL team, Industry Council, and other industry groups
 - These will be used to determine the future development of VERA
- The DOE decision on renewal is pending