Tonawanda Community Air Quality Study

Division of Air Resources Bureau of Air Quality Analysis & Research Bureau of Air Quality Surveillance EPA Air Toxics Webinar Series June 25, 2009

Purpose of Study

- Evaluate the effectiveness of the 1990 Clean Air Act Air Toxics Program;
- Participate in the National Ambient Air Toxics Monitoring Strategy;
- Characterize the degree and extent of local-scale air toxics problems;

Purpose of Study

- Provides information for the community and State/Federal government to identify the need for implementing risk reduction strategies.
- Community education understanding air toxics regulation to foster community involvement.

Why Was Tonawanda Selected ?

- Community concerns about ambient concentrations of benzene and odors;
- EPA's 1999 National-scale Air Toxics Assessment (NATA) results for Erie County;
- Coke Oven Residual Risk Assessment prepared by EPA

Community Outreach

- Small meetings with community prior to study;
- Three major public meetings held in affected community to discuss study.
 - Presentation of study design and six months of monitoring results;
- Presentation of one year of monitoring results and individual risk;
- Presentation of study conclusions, current actions, future actions and our data analysis.

Commitment to the Public

- Keep public informed by holding public meetings to discuss project and results
- Continue to work on air pollution reduction strategies
- Collaborate with the Clean Air Coalition of Western N.Y. (CACWNY)

Tonawanda Study Plan

- Collected monitoring data from four sites for one year
- Analyze pollutant specific data
 - Evaluate influence of wind direction on monitored concentrations
 - Compare annual average concentrations to health-based guidelines and characterize risk
 - Assess emissions and potential contribution to monitored concentrations
 - Mobile sources, large (major) and small (area) industrial and manufacturing sources

Tonawanda Study Plan

- Enhance emission inventory for large and small sources
- Model these emissions to:
 - Allow for comparison to monitored values
 - Allow for analysis of previously modeled air toxics (EPA's NATA)
 - Evaluate a new multi-facility modeling tool developed by EPA
 - Evaluate previous Coke Oven modeling results, conducted for Residual Risk Assessment

Air Toxics Measured July 2007 – July 2008

- 44 Volatile Organic Compounds (VOCs) and 12 Carbonyls;
- 1 in 6 day sampling schedule (24 hour sample);
- 15 of the chemicals are high priority urban air toxics targeted for reductions by the 1990 Clean Air Act.

Decision Matrix - To assess suitability of characterizing annual averages for health risk evaluation

Compounds greater than the AGC

- Volatile Organic Compounds
 - Benzene
 - Acrolein
 - Carbon tetrachloride

- Carbonyls
 - Formaldehyde
 - Acetaldehyde

Acrolein

12 month average

Carbon tetrachloride

12 month average

Carbon Tetrachloride Pollution Roses

10

TWA CONC. = 0.7 µg/m3

TWA CONC.=0.7 µg/m3

TWA CONC. = 0.7 µg/m3

TWA CONC. = 0.7 μg/m3

Formaldehyde

12 month average

Formaldehyde Pollution Roses

10

TWA CONC. = 2.5 µg/m3

TWA CONC. = 2.9 µg/m3

TWA CONC. = 9.5 µg/m3

TWA CONC. = 3.2 µg/m3

Benzene

NYS Benzene Monitoring Data 2005-2007

Benzene Cancer Risk

10

10

TWA CONC. = 3.3 µg/m3

99

TWA CONC. = 3.3 µg/m3

- 20

and the second s

TWA CONC. = 3.3 µg/m3

an En britanista a sud Entra Esperantes Santas Esperantes Referenzaria de la companya esperantes esperantes esperantes esperantes esperantes esperantes esperantes espera

TWA CONC. = 3.3 µg/m3

Tonawanda Community Air Quality Study

Division of Air Resources Community Presentation June 12, 2009 Sheridan Parkside Community Center Tonawanda, NY

Conclusion

The results of the community air quality monitoring study and data analysis indicates there is a need for a focused effort to reduce the burden of air toxics in the Tonawanda area.

Future Air Pollution Reduction Project Goals

- Reduce odor complaints in community;
- Reduce the emissions of chemicals associated with acute irritation effects;
- Reduce cancer risk in the community.

Benzene Emissions - Tons per year Tonawanda Community Area

Model to Measured Comparisons

- NATA 2002 ASPEN
- Human Exposure Model 3 (HEM3) AERMOD
- Regional Air Impact Modeling Initiative ISCST3

Measured to Modeled NATA

Measured to Modeled - RAIMI

Measured to Modeled - RAIMI

EPA Coke Oven Residual Risk Assessment (2005)

- Assessed non-cancer and cancer risk of emissions from all operations (battery emissions, by-product plant, pushing fugitives and quenching) at Tonawanda Coke Corporation;
- Part 63 NESHAP Subpart L for Coke Oven Batteries (1993) addressed emissions from charging, and leaks from doors, lids and off-takes.

EPA Coke Oven Residual Risk Assessment (2005)

- Part 63 NESHAP Subpart CCCCC for Coke Ovens: Pushing, Quenching and Battery Stacks (2003);
- Part 61 NESHAP Subpart L for Benzene from Coke Oven By-Product Recovery Plants (1989).

EPA Coke Oven Residual Risk Assessment (2005)

- No non-cancer risk identified in community;
- Identified maximum cancer risk of 100 x 10⁻⁶ in community around Tonawanda Coke;
- Cancer risk drivers were benzene and benzene soluble organics (BSO) – coke oven emissions;
- Modeled Emissions 15.3 tons of benzene, 4.98 tons of BSO;
- Identified limitation about the lack of monitoring data around any of the 4 facilities.
- End Result adoption of lowest achievable emission rate for coke oven batteries.

EPA Coke Oven Residual Risk Assessment (2005) Check

- **Non-cancer** inhalation risk screen for benzene (hazard quotient (HQ) = 0.2)
- GIBI monitor (HQ = 0.3)
- Other monitoring sites (HQ < 0.1)

EPA Coke Oven Residual Risk Assessment (2005) Check

- Maximum benzene cancer risk predicted from Tonawanda Coke was 50 x 10⁻⁶
- GIBI benzene cancer risk measured
 75 x 10⁻⁶
- BTRS benzene cancer risk measured 16 x 10⁻⁶

Thank You

 Questions about facilities and emissions - Larry Sitzman (716) 851-7130 lbsitzma@gw.dec.state.ny.us Questions about Tonawanda Study Report – Tom Gentile (518) 402-8402 tjgentil@gw.dec.state.ny.us - Paul Sierzenga (518) 402-8508 pmsierze@gw.dec.state.ny.us

