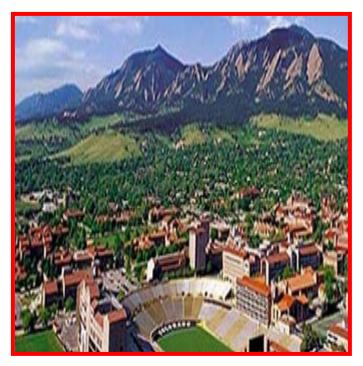
Understanding Air Toxics and Carbonyl Pollutant Sources in Boulder County, Colorado

Presented by: Pam Milmoe & Adam Eisele

A. Eisele^{1,2}, M. Hannigan¹, J. Milford¹, D. Helmig², P. Milmoe³, D. Tanner² ¹Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427 ²Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO 80309-0450 ³Boulder County Public Health, Environmental Health Division, Boulder, CO 80304-1824

DISCLAIMER


- The contents of this presentation reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the views of the U.S. Environmental Protection Agency.
- This presentation does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

Roadmap

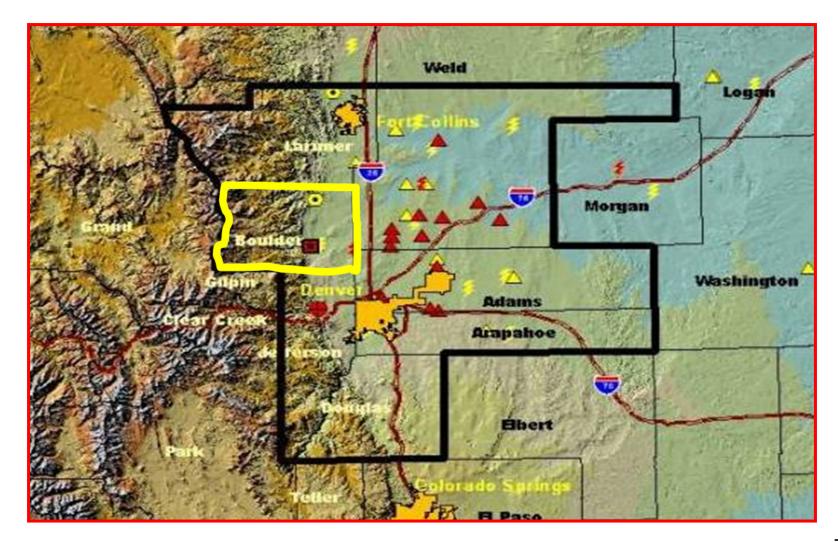
- Motivation
- Project Objectives
- Quality Assurance
- Data Analysis
- Source Apportionment
- Modeling Results
- Conclusions
- Recommendations

Motivation

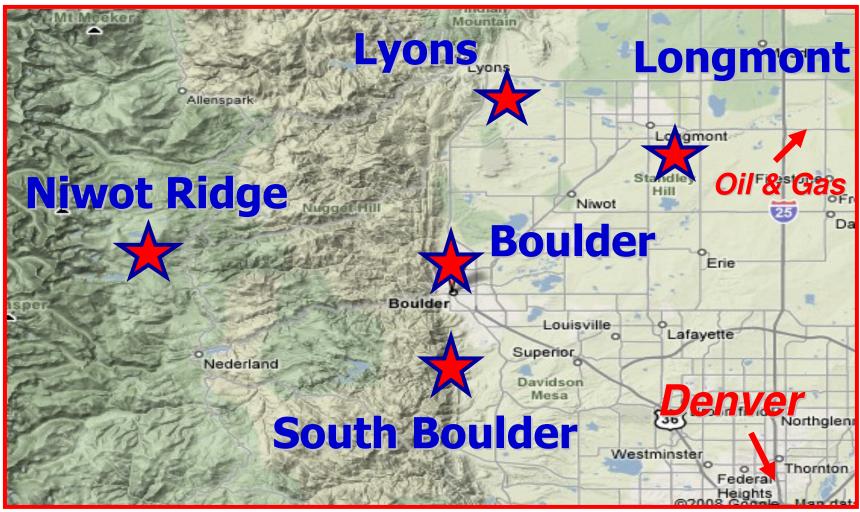
- Anderson Study in 1996 found higher aldehyde concentrations in Boulder than Denver
- Oil & natural gas production activities in neighboring counties increased and began to pose potential health risks
- Denver Metro Area (DMA) experiences high ozone concentrations and is currently designated as non-attainment for failing to meet the 8-hr ozone NAAQS set by the EPA

⁽www.colorado.edu)

Successful Partnerships

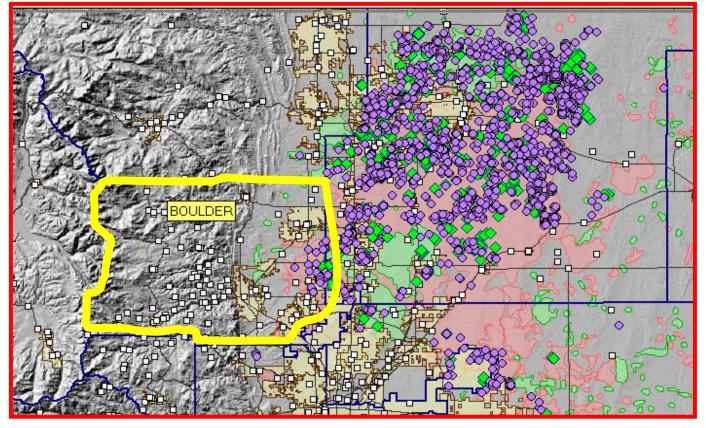

- BCPH, University of Colorado, & EPA Region 8 collaborated to form project team that collected one year of detailed air toxics measurements
- A number of students were trained & educated on measuring air quality; two of which now work at EPA
- Public Health staff gained valuable monitoring knowledge and experience and provided valuable information to residents

Boulder County Public Health Air Toxics Website



http://www.bouldercounty.org/health/environ/airquality/outdoorair/airToxics.htm

DMA NFR Nonattainment Area



5 Sampling Locations

(2008 Google Maps)

Adjacent Oil & Gas Activities

(COGCC, 2008)

Existing Permits
Pending Permits

Project Objectives

- Delineate concentrations of local scale VOCs, carbonyls, & ozone
- Develop a baseline reference for longer-term measuring
- Evaluate and improve ambient air quality exposure & community-scale dispersion models
- Aid in air quality management strategies in Boulder County & Denver DMA NAA

What Did We Do? Mar 1, 2007 – Feb 24, 2008

Sampling

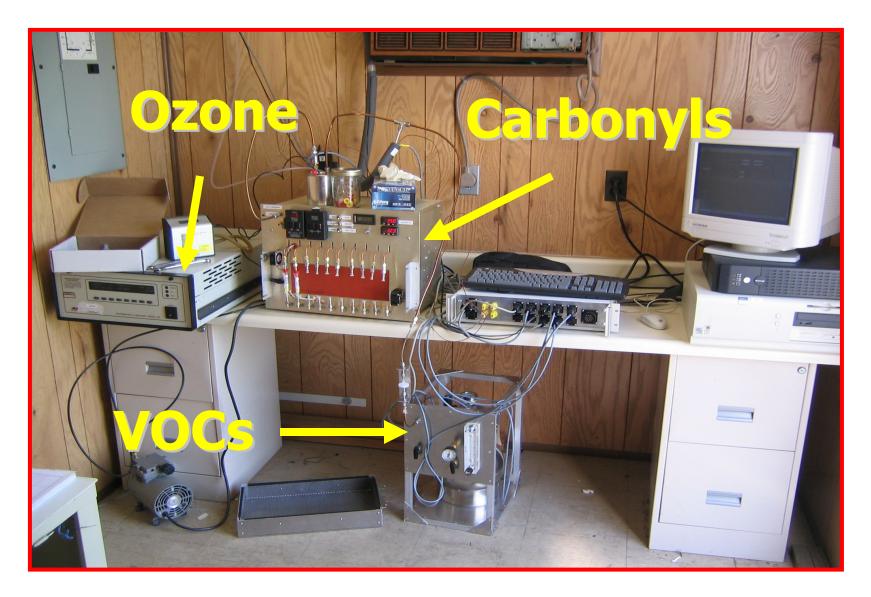
- VOCs (27)
- Carbonyls (8)

24hr integrated sample every 6th day @ each location

Eight consecutive 3hr samples every 6th day @ <u>one</u> location

In-Situ Measurements

Ozone continuous, 5 minute avg
 Meteorological Data 11


Air Toxics Monitored

VOCs (EPA Method TO-15)

 benzene, toluene, ethylbenzene, xylenes, hexane, & styrene

- Carbonyls (EPA Method TO-11A)
 formaldehyde, acetaldehyde, & acrolein
- Ozone (40 CFR, Part 50 App. D)

Sampling Instrumentation

Overall Data Completeness

VOCs Carbonyls Ozone ~85% ~94% ~95%

Includes 3-hour and 24-hour samples

Percent of Samples Detected

Carbonyls

VOCs

	3-hr	24-hr
formaldehyde	75	100
acetaldehyde	55	100
acrolein	2	77
acetone	68	100
propionaldehyde	28	94
crotonaldehyde	1	12
butyraldehyde	63	99
benzaldehyde	3	33

	3-hr	24-hr
n-butane	100	100
n-pentane	99	98
hexane	97	94
toluene	99	98
octane	69	68
ethylbenzene	90	88
m&p-xylene	95	97
o-xylene	72	72
nonane	65	66

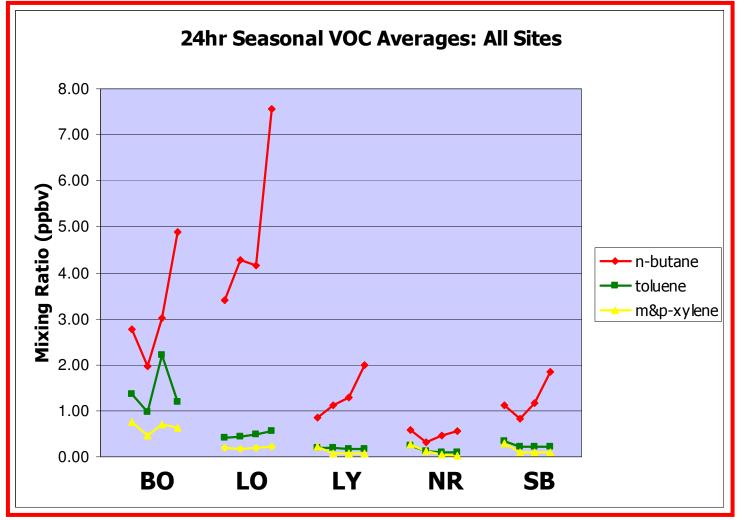
24-hr VOC Duplicates

Analyte	# of samples	Average RPD
n-butane	35	12
trans-2-butene	10	90
cis-2-butene	5	14
1_2-butadiene	0	4
1-pentene	7	29
2-methyl-1-butene	7	19
n-pentane	33	21
cis-2-pentene	3	12
2-methyl-2-butene	6	19
2_2-dimethylbutane	0	7
3-methylpentane	27	33
2-methyl-1-pentene	5	39
hexane	33	24
trans-2-hexene	0	11
cis-2-hexene	1	
benzene	35	79
23-dimethylpentane	5	- 21
heptane	31	22
2_3_4-trimethylpentane	2	37
toluene	34	23
3-methylheptane	9	11
octane	24	28
ethylbenzene	29	49
m&p-xylene	34	36
styrene	9	20
o-xylene	23	51
nonane	23	36
	Overall Median	26

16

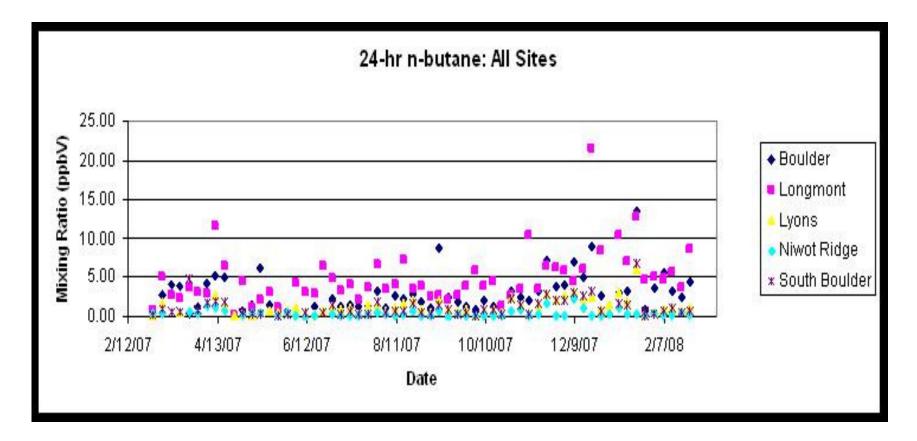
24-hr Carbonyl Duplicates

Analyte	# of samples	Average RPD
formaldehyde	12	6.3
acetaldehyde	12	6.9
acrolein	12	25.7
acetone	12	5.5
propionaldehyde	12	35.9
crotonaldehyde	12	43.2
butyraldehyde	12	14.6
benzaldehyde	12	34.9
	Overall Average RPD	21.6 %

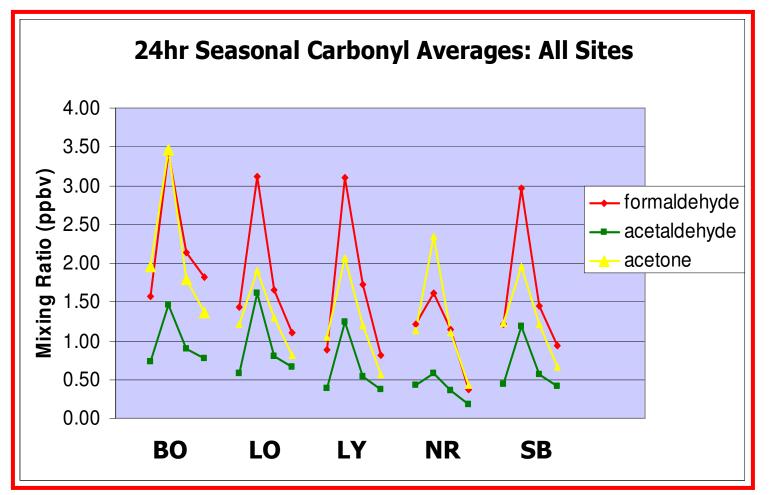

Eight 3-hr samples vs. 24-hr samples

Average Absolute RPD of Eight 3-hr Samples vs. 24-hr Samples				
	n	Absolute RPD (%)		
formaldehyde	40	10.2		
acetaldehyde	40	20.2		
acetone	40	19.3		

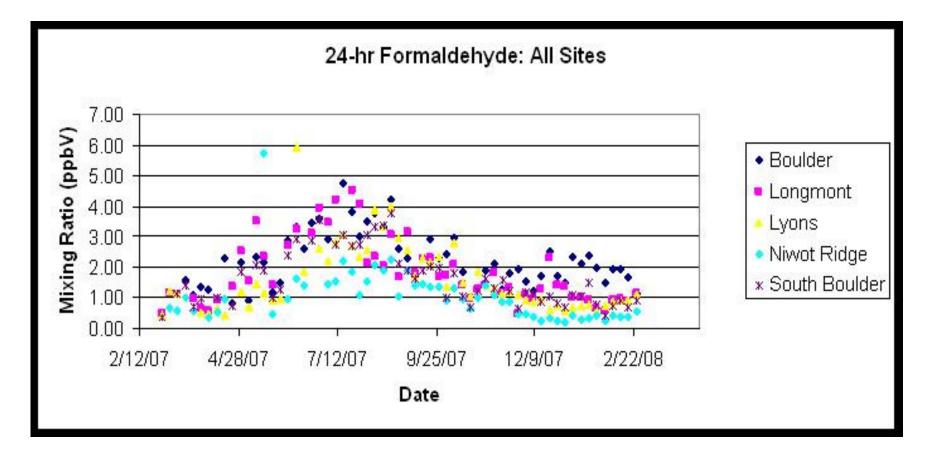
Average RPD of Eig	n	RPD (%)
n-butane	39	12.0
n-pentane	39	23.2
3-methylpentane	39	48.2
hexane	39	32.5
heptane	39	36.8
toluene	39	30.3
octane	39	66.2
ethylbenzene	39	49.3
m&p-xylene	39	37.4
o-xylene	39	78.6
nonane	39	75.8


18

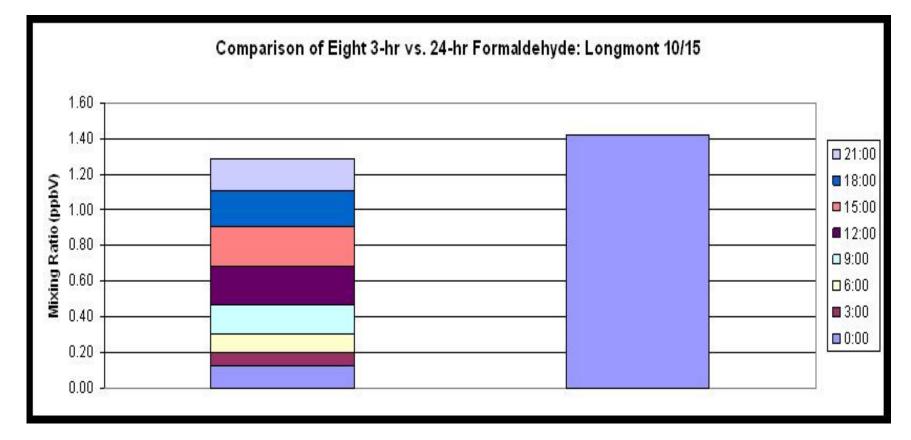
Seasonal Averages: VOCs


Each dot represents a season, starting with spring ¹⁹

24-hr n-butane


Overall, VOC concentrations were not seasonally dependent

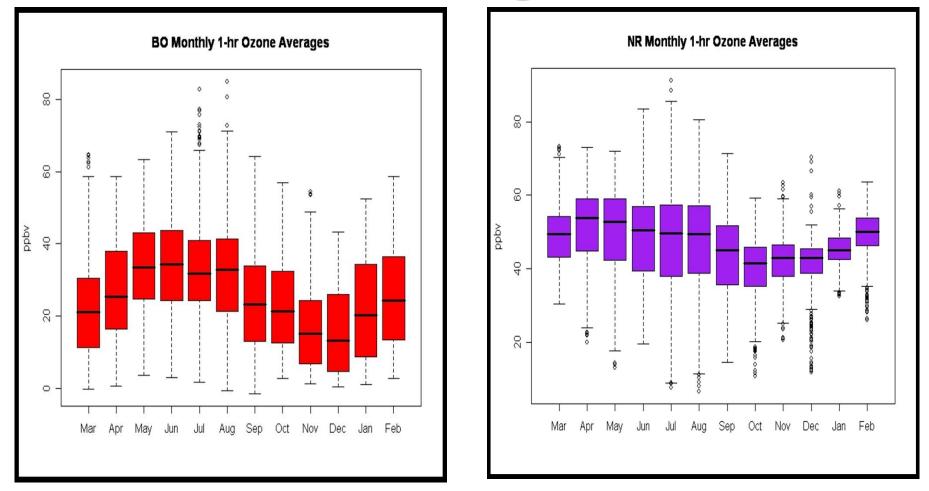
Seasonal Averages: Carbonyls


Each dot represents a season, starting with spring ²¹

24-hr Formaldehyde

Carbonyl concentrations were greatest in summer months

Eight 3-hr vs. 24-hr Formaldehyde: Longmont


The sum of the eight 3-hr samples compared fairly well to the one 24-hr sample collected during the same period ²³

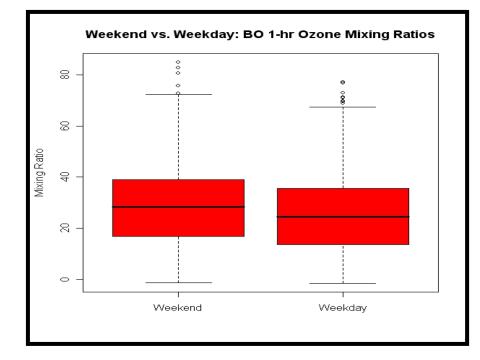
Ozone Correlation Matrix

Correlation Matrix: 1-hr Ozone Values							
	Boulder	Boulder Longmont Lyons		Niwot Ridge	South Boulder		
Boulder	1						
Longmont	0.62	1					
Lyons	0.77	0.71	1				
Niwot Ridge	0.34	0.37	0.41	1			
South Boulder	0.72	0.69	0.78	0.49	1		

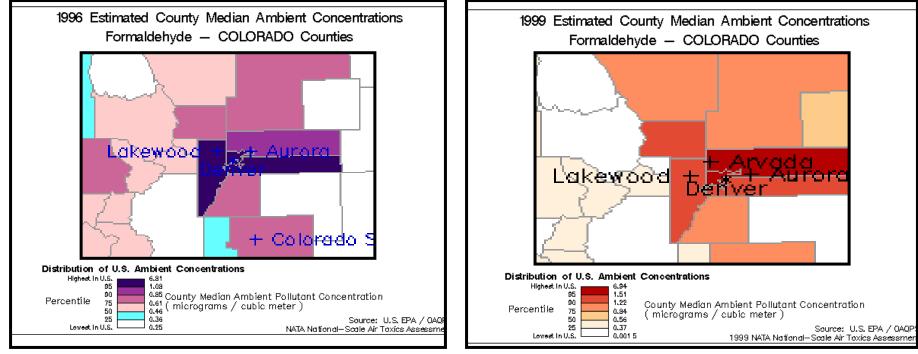
The Niwot Ridge background site had the lowest correlation values when compared to the Front Range sites

Seasonal 1-hr Ozone Averages

Seasonal variations at Boulder & Niwot Ridge²⁵


Weekend vs. Weekday Analysis

 Compared weekend vs. weekday samples for VOCs, carbonyls, and ozone to better understand the impact of mobile source traffic


Weekend vs. Weekday 24-hr Median Concentrations (in ppbV)								
Boulder Niwot Ridge								
	Weekday							
formaldehyde	2.15	2.10	0.96	0.67				
acetaldehyde	0.95	0.81	0.36	0.28				
n-butane	2.45	3.32	0.29	0.39				
toluene	1.21	0.95	0.11	0.11				
m&p-xylene	0.58	0.44	0.06	0.06				

Weekend vs. Weekday Ozone

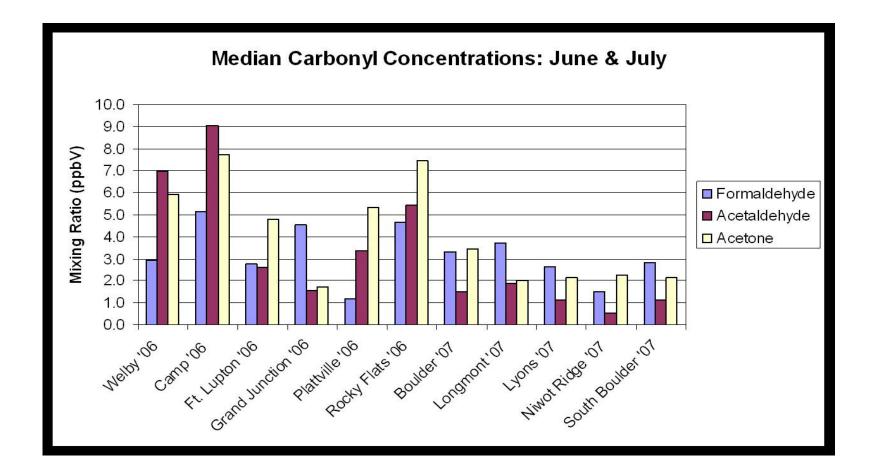
Annual 1-hr Ozone Medians at Each Site (in ppbV)									
Bou	lder	Long	mont	Lyons Niwot Ridge		nont Lyons Niwot Ridge Sout			
Wknd	Wkdy	Wknd	Wkdy	Wknd	Wkdy	Wknd	Wkdy	Wknd	Wkdy
28.0	24.9	28.4	27.3	39.0	38.0	46.6	45.9	39.6	38.3

1996 & 1999 EPA NATA for Formaldehyde

(www.epa.gov/nata/mapconc.html)

1996 NATA: 0.61–0.85 μg/m3 1999 NATA: 1.22-1.51 μg/m³

2007-2008 Boulder County Median: 1.50 µg/m³


DDEH 05-06 vs. BCPH 07-08

DDEH 2005-2006 Air Toxics Study: 24-hr Median Concentrations (in ppbV)										
	Auraria	Auraria <u>Swansea</u> Palmer Vanderbilt								
formaldehyde	3.86	7.79	5.28	2.43						
acetaldehyde	11.38	11.90	10.12	3.06						
acrolein	0.07	0.07	0.07	0.07						
benzene	0.89	1.06	0.70	0.54						
toluene	2.42	3.33	1.51	2.11						
m&p-xylene	1.55	2.34	1.14	1.23						
o-xylene	0.89	1.21	0.62	0.58						

BCPH 2007-2008 Air Toxics Study: 24-hr Median Concentrations (in ppbV)								
Boulder Longmont Lyons Niwot So Ridge Bou								
formaldehyde	2.14	1.42	1.18	0.94	1.27			
acetaldehyde	0.90	0.76	0.47	0.34	0.56			
acrolein	0.05	0.04	0.02	0.00	0.02			
benzene	0.95	0.77	0.55	0.68	0.57			
toluene	1.98	0.47	0.15	0.11	0.20			
m&p-xylene	0.57	0.19	0.08	0.06	0.10			
o-xylene	0.17	0.06	0.03	0.00	0.03			

Overall, BCPH values were less than the Denver Study

CDPHE 2006 Summer Study

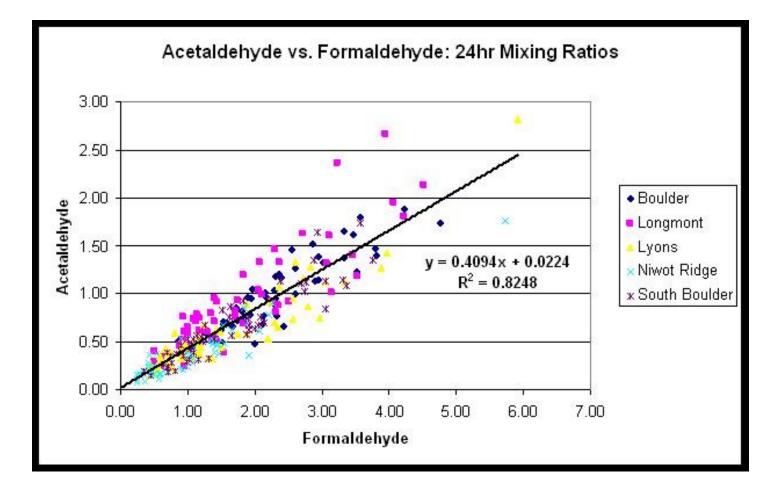
BCPH values were also less than the 2006 CDPHE data

Source Apportionment

Pairwise correlation analysis

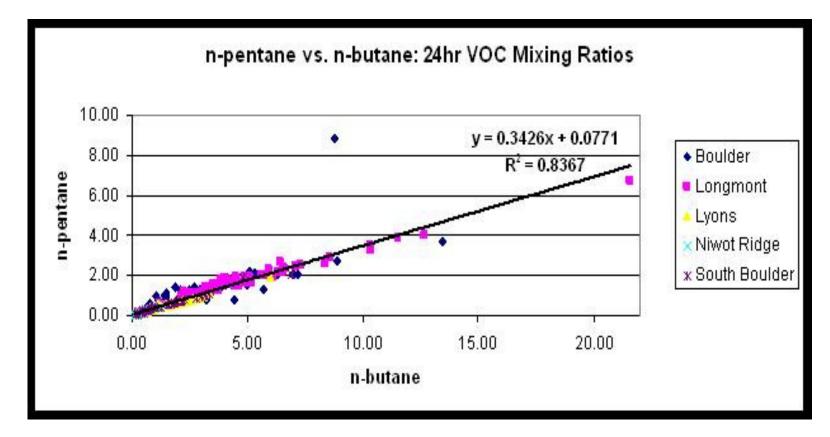
Principal Components Analysis (PCA)

24-hr Carbonyl Correlation Matrix: Boulder Site


	formaldehyde	acetaldehyde	acrolein	acetone	propionaldehyde	crotonaldehyde	butyraldehyde	benzaldehyde
formaldehyde	1							
acetaldehyde	0.91	1						
acrolein	- 0.10	0.30	1					
acetone	0.73	0.78	0.08	1				
propionaldehyde	0.86	0.89	0.22	0.78	1			
crotonaldehyde	-0.23	0.23	0.05	0.12	0.25	1		
butyraldehyde	0.67	0.67	0.24	0.82	0.74	0.13	1	
benzaldehyde	-0.08	0.08	0.18	0.13	0.12	0.05	0.02	1

Low correlation values were likely a quantification issue

24-hr VOCs Correlation Matrix: Boulder Site


	n-butane	n-pentane	hexane	toluene	octane	ethylb en zen e	m&p-xylene	o-xylene	nonane
n-butane									
n-pentane	0.71	1							
hexane	0.61	0.98	1						
toluene	0.52	0.84	0.86	1					
octane	0.61	0.95	0.97	0.83	1				
ethylbenzene	0.48	0.89	0.93	0.83	0.93	1			
m&p-xylene	0.51	0.90	0.94	0.83	0.95	0.99	1		
o-xylene	0.48	0.91	0.95	0.85	0.96	0.98	0.99	1	
nonane	0.45	9,79	0.83	0.70	0.87	0.88	0.90	0.89	1

Acetaldehyde vs. Formaldehyde

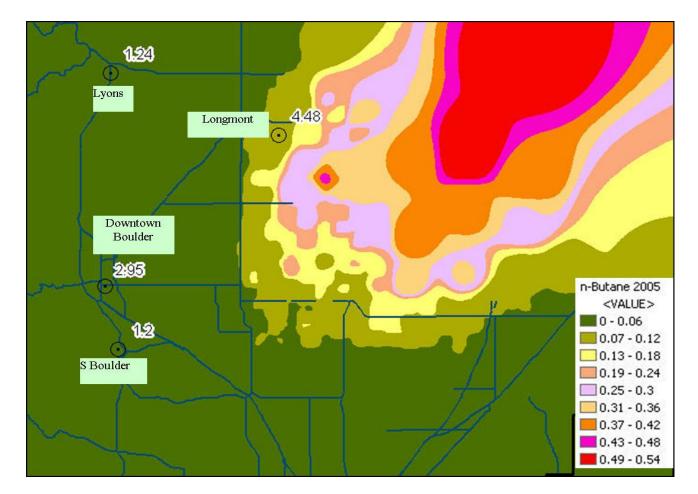
Acetaldehyde & formaldehyde correlated well at all sites

n-pentane vs. n-butane

Strong VOC correlations suggest similar emission sources

Source Profiles

	Hydroxyl radical rate constant (Carter, 1992)	Roadway ppbC % of (Lonneman)	TNMOC†	Gasvap (n=6) ppbC % of TNMOC [†] (Lonneman <i>et al.</i> , 1991)		
	cm ³ molecule ⁻¹ s ⁻¹	Average	S.D.	Average	S.D.	
Sum of 38 species		57.60		60.53		
‡ Ethylene	8.45×10^{-12}	4.55	0.47	0.01	0.01	
‡ Acetylene	7.80×10^{-13}	3.94	0.65	0.01	0.02	
t Iso-butane	2.36×10^{-12}	1.17	0.26	4.66	1.19	
	2.56×10^{-12}	4 31	0.73	19 33	2.17	
<i>n</i> -pentane	4.11×10^{-12}	2.80	0.28	8.53	0.60	
2-methylpentane	5.66 × 10~12	2.55	0.08	3.99	0.45	
‡ 3-methylpentane	5.77×10^{-12}	1.49	0.05	2.18	0.28	
Methylcyclopentane/ 2, 4-dimethylpentane	8.11×10^{-12}	1.56	0.07	1.37	0.07	
t Benzene	1.29×10^{-12}	2.86	0.19	0.88	0.13	
Cyclohexane/ 2-methylhexane	7.56×10^{-12}	1.09	0.05	0.67	0.11	
2, 2, 4-trimethylpentane	3.72×10^{-12}	2.62	0.22	0.66	0.32	
2, 3, 4-trimethylpentane	8.72×10^{-12}	1.00	0.10	0.17	0.07	
t Ethylbenzene	7.09×10^{-12}	1.34	0.03	0.10	0.01	
* Propylene	2.60 × 10 ⁻¹¹	2.05	0.17	0.13	0.09	
* m/p-xylene	1.90×10^{-11}	4.54	0.14	0.29	0.04	
o-xylene/n-nonane	1.37 × 10 11	1.96	0.06	0.11	0.01	
§1-butene	3.11×10^{-11}	1.25	0.09	1.16	0.71	
§ Trans-2-butene	6.30×10^{-11}	0.43	0.03	1.82	0.50	
& Cis-2-Butene	5.58×10^{-11}	0.35	0.03	1.62	0.38	
§ 1-pentene	3.11×10^{-11}	0.41	0.03	1.32	0.19	
	(* (10-1)	0.50	0.01	0.66	0.00	


Potential Pollution Source Based on PCA Results (based on variance)

Potential Pollution Source Rank by Site							
	1st	2nd	3rd				
Boulder	Mobile Source	Secondary Formation	Evaporative				
Longmont	Evaporative	Secondary Formation	Mobile Source				
Lyons	Secondary Formation	Evaporative	Mobile Source				
Niwot Ridge	Secondary Formation	Mobile Source	Evaporative				
South Boulder	Mobile Source	Evaporative	Secondary Formation				

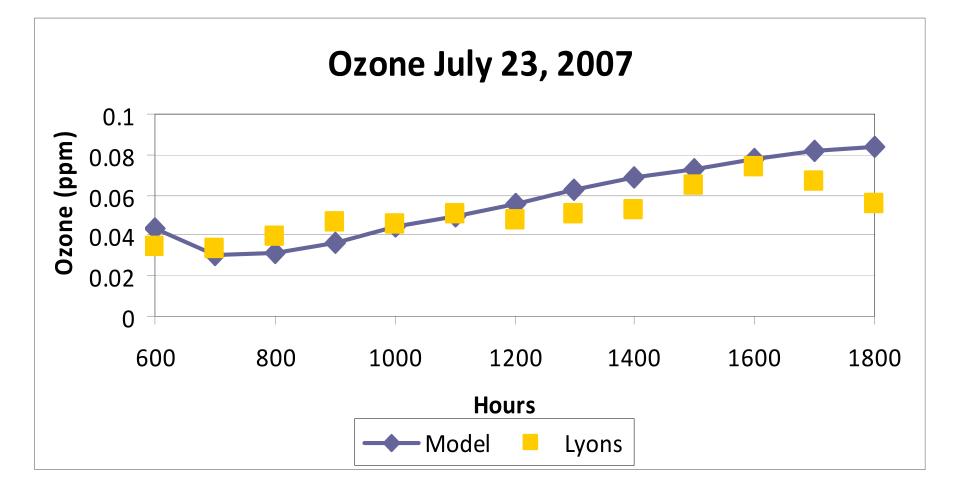
Dispersion Modeling

- AERMOD & MOBILE6.2 models used
- Pollutants included in model
 - Formaldehyde
 - Acetaldehyde
 - BTEX
 - Hexane
 - Diesel PM

Predicted 2006 n-butane with 2007 Boulder Observed n-butane (ppbV)

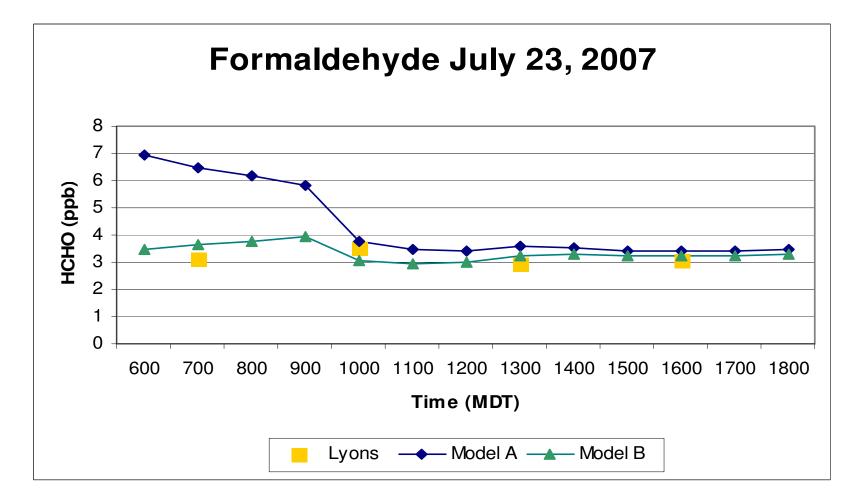
Inventories underpredict n-butane direct emissions ³⁹

Dispersion Model Results


Site	Obs Butane avg	AERMOD Butane avg	Obs Pentane avg	AERMOD Pentane avg	Obs Hexane avg	AERMOD Hexane avg
Boulder Fire Station	2.95	0.002	1.35	<.001	0.71	0.04
Longmont	4.48	0.09	1.66	0.02	0.62	0.01
Lyons	1.24	0.001	0.46	<.001	0.21	0.005
South Boulder	1.20	0.001	0.44	<.001	0.21	0.005

- AERMOD generally under predicts by a factor of 2–10 in Denver-Boulder Region
- Using local/rural met measurements would improve modeled results

Photochemical Modeling


- OZIPR model used to model formation of ozone and secondary pollutants
- Run from May August 2007 with observed data
- Overall, OZIPR generally overpredicted acetaldehyde concentrations by a factor of 3

Comparison of OZIPR Predictions & Observed Ozone at Lyons, CO

Ozone was simulated reasonably well on most days ⁴²

Comparison of OZIPR Predictions & Observed Formaldehyde at Lyons, CO

Formaldehyde predictions were much closer for Model B

- Delineate concentrations of local scale air toxics
- Develop a baseline reference for longer-term measuring
- Evaluate and improve air quality exposure and dispersion models
- Guide air quality management strategies in Boulder County & DMA NAA

Conclusions

- Overall carbonyl & VOC concentrations in 07-08 were lower than those in the Anderson Studies and other FR studies
- Carbonyl concentrations peaked in the summer months, suggesting increased photochemistry
- VOC concentrations were relatively stable and were not seasonably variable

Conclusions

- From PCA results, mobile source exhaust, natural gas condensate emissions, and meteorology are significant pollution source
- Ozone values varied from site to site, but increased significantly in summer
- Ozone values occasionally exceeded the former/current 8-hr NAAQS values

Recommendations

- Increase sampling frequency for weekend vs. weekday analyses
- Use higher resolution sampling durations for source apportionment
- Use analytical equipment capable of quantifying additional natural gas markers
- Get EPA assistance with AQS uploads

Acknowledgements

- Boulder County Public Health, Colorado Dept. of Public Health, & EPA Region 8
- Jana Milford, Mike Hannigan, & Detlev Helmig
- Steve Dutton, Greg Brinkman, David Tanner, Ian Hoffecker, Boulder Fire Rescue, Foothills Baptist Church, Gordon Pierce, Duane Kitzis, Gregg Thomas, Ken Distler, Michael Copeland, Jacques Heuber, Molly Brodin, & Larry Anderson

References

- Anderson, L.G., Lanning, J.A., Barrell, R., Miyagishma, J., Jones, R.H., Wolfe, P., 1996. Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver's Ambient Concentration Data. Atmospheric Environment 30, 2113-2123.
- Anderson, L.G., Machoved, C.M., Lanning, J.A., 1998. Effects of the Mandated High Oxygen Fuels Program on the Concentrations of Formaldehyde and Acetaldehyde in Denver's Air. Proc Air Waste Man Ass. Paper No 98-WA61A.01, 4 pp.
- Lin, C., Milford, J.B., 1994. Decay-Adjusted Chemical Mass Balance Receptor Modeling for Volatile Organic Compounds. Atmospheric Environment 28, 3261-3276.
- Mobile-Source Air Toxics: A Critical Review of the Literature on Exposure and Health Effects: Special Report 16. Health Effects Institute, November 7, 2007.
- 1996 NATA, <u>http://www.epa.gov/ttn/atw/natamain/index.html</u>. August 13, 2008.
- 1999 NATA, <u>http://www.epa.gov/ttn/atw/natamain/index.html</u>. August 13, 2008.
- Riggs, S.D., Anderson, L.G., Lanning, J.A., 1996. A Comparison of Source Contributions to Carbonyl Concentrations in Denver, Colorado and Outlying Areas. *Proc. Air Waste Man. Ass.* Paper No.97-WP68B.02, 11 pp.
- Thomas, G.W., Bain D., Williams, S.M., 2007. Going One Step Beyond: A Neighborhood Scale Air Toxics Assessment in North Denver. Prepared for Federal Highway Administration NCHRP program. Report available fall 2007 at: www.denvergov.org/EAP
- Thomas, G.W., 2004. *The Denver Urban Air Toxics Assessment: Methodology, Results, Risks.* Report available at: www.denvergov.org/EAP