

NOTICE OF INTENT FOR DISCHARGE UNDER MASSACHUSETTS DEWATERING GENERAL PERMIT MAG070000

EMMANUAL COLLEGE - NEW RESIDENCE HALL

BOSTON, MASSACHUSETTS

SEPTEMBER 30, 2016

Prepared For:

U.S. Environmental Protection Agency
Dewatering GP Processing
Industrial Permit Unit (OEP 06-4)
5 POST OFFICE SQUARE – SUITE 100
BOSTON, MA 02109-3912

On Behalf Of:

Emmanuel College 400 The Fenway Boston MA, 02115

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868 1420

PROJECT NO. 5980

September 30, 2016

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square – Suite 100 Boston, MA 02109-3912

Attention: To Whom it May Concern

Reference: Emmanuel College – New Residence Hall; Boston, Massachusetts

Dewatering General Permit

Ladies and Gentlemen:

On behalf of Emmanuel College, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Massachusetts Dewatering General Permit MAG070000 (DGP) for the discharge of construction dewatering effluent into the Charles River via the City of Boston storm drainage system. The temporary construction dewatering discharge will occur during construction of the proposed development at the former location of Julie Hall at Emmanuel College in Boston, Massachusetts (subject site). Refer to **Figure 1** entitled Project Location Plan for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated July 12, 2016, and the subsequent authorization of Emmanuel College. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the DGP and Boston Water & Sewer Commission Dewatering Discharge Permit Application are included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

Emmanuel College 400 The Fenway Boston, MA 02115

Attention: Sister Anne Donovan

Office: (617) 732-1681

Email: donovan@emmanuel.edu

Site Location and Current Conditions

The proposed residence hall is to be located within the campus of Emmanuel College along the east side of Brookline Avenue, and bounded by Saint Joseph and Saint Ann Halls to the north, Marian Hall to the east, and Beth Israel Deaconess Medical Center to the south. The site is located at the former site of Julie Hall which has recently been demolished as part of the proposed development. Ground surface across the site gradually rises from the northwest to the southeast, ranging from about Elevation +20 to Elevation +25. The limits of the subject site are shown on the attached Subsurface Exploration Plan prepared by McPhail Associates (**Figure 2**).

Proposed Scope of Site Development

The proposed, structure is planned to have a 19-story east wing tower and a 6-story west wing. One level of below-grade parking and mechanical space is currently planned below the building wings as well as the interstitial space between. The below-grade level is understood to occupy a footprint of approximately 28,000 square feet as indicated on **Figure 2**, Subsurface Exploration Plan. The top of the lowest level floor slab will be at approximately Elevation +7.

<u>Site Environmental Setting, Nearby DEP-listed Disposal Sites and Surrounding Historical Places</u>

Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map (GIS Map) viewed on September 23, 2016, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

The GIS Map indicates that an unnamed body of water is located approximately 100 feet northwest of the subject site at Higgins Circle which is also the closet protected open space. There are no areas designated as solid waste sites (landfills) noted as being located within 3,000 feet of the subject site. A copy of the Massachusetts GIS Priority Resources Map is included in **Appendix C**.

A review of the most recent National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location.

McPhail recently completed a soil pre-characterization testing program for the off-site reuse of excess soils to be generated during the proposed construction. Those results indicated the presence of arsenic, lead, polynuclear aromatic hydrocarbons (PAH) and total petroleum

hydrocarbons (TPH) at concentrations that exceed applicable Reportable Concentrations pursuant to the provisions of the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP). The release condition was limited to surficial urban fill material and is considered to be attributable to the presence of ash and cinders in the fill. The underlying natural soils were not impacted. Further, groundwater at the site has not been impacted by a release of arsenic, lead, PAH, or TPH.

Temporary Construction Dewatering

Subsurface explorations performed at the subject site encountered the surface of groundwater at a depth of about 12.6 feet below the existing ground surface corresponding to Elevation +9.8.

In order to perform the building excavations at the subject site, which are anticipated to extend below the groundwater level for construction of the foundations, and also to provide for management of water which may become trapped within the excavation areas following periods of precipitation, the construction dewatering discharge into the city's storm drain is necessary.

It is estimated that continuous groundwater discharge during the construction will be on the order of 25 to 50 gallons per minute (gpm). The maximum daily flow is estimated to be 72,000 GPD and the average monthly flow is estimated to be 54,000 GPD.

Given that the footprint of the proposed construction occupies a majority of the project site, temporary on-site collection and recharge of groundwater is not feasible. As a result, construction dewatering will require the discharge of collected groundwater and stormwater into the storm drain system under the requested DGP.

A review of available subgrade utility plans provided by the Boston Water and Sewer Commission (BWSC) indicates the presence of a dedicated storm drain system located adjacent to the subject site, beneath Brookline Avenue. As indicated by the BWSC utility plans, the storm drain flows north-northeast beneath Brookline Avenue, turning northwest beneath Deerfield Street and discharges into the Charles River at outfall SDO 042. The location of the relevant storm drain in relation to the subject site is indicated on **Figure 2**. The flow path of the discharge is shown in plans provided by the BWSC which are included in **Figure 3A through 3G**.

Summary of Groundwater Analysis

A total of three (3) representative groundwater samples identified as B-4 (OW) S-1 were submitted to a laboratory for chemical analysis. A summary of the analytical data are provided on **Table 1.** A copy of the laboratory reports are included in **Appendix D**.

July 21, 2016

One groundwater sample was collected and submitted to a laboratory for the analysis of total metals, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), total suspended solids (TSS), chloride, total cyanide, total residual chlorine, total phenolics hexavalent chromium, poly chlorinated biphenyls (PCBs), microextrctables, and pH.

Results of the analysis indicated the presence of chloride, total phenolics, arsenic, chromium, copper, iron, lead, nickel, zinc and acetone above laboratory detection limits. In addition, levels of TSS were also detected at 130,000 micrograms per liter (ug/l). As a result, the detected levels of total metals was considered attributable to the elevated TSS levels and a second sample was collected and submitted to a laboratory for analysis.

July 27, 2016

One groundwater sample was collected and submitted to a laboratory for the analysis of total petroleum hydrocarbons (TPH). Results of the analysis did not indicate the presence of TPH above laboratory method detection limits.

August 18, 2016

Based on the results of the initial sampling event on July 27, 2016, and additional groundwater sample was collected and submitted to a laboratory for the analysis of total metals, dissolved metals, TSS, and pH.

With the exception of iron, results of the analysis did not indicate the presence of total or dissolved metals above laboratory detection limits. In addition, TSS levels were significantly lower at 10,000 ug/l, which confirms that the detected levels from the sampling event on July 21, 2016 are attributable to suspended solids.

Dissolved iron was detected at 100 ug/l which is below the US Environmental Protection Agency (EPA) established effluent limits. However, total iron was detected above the EPA limit at 3100 ug/l. As a result, treatment of groundwater which includes a sediment settling tank and bag filtration will be necessary to remove suspended iron from the groundwater.

<u>pH:</u> The tested sample exhibited a pH level of 6.2 Standard Units (S.U.) which is below the minimum limit of 6.5 S.U. for discharge into fresh waters.

TSS: The total suspended solids of the groundwater were tested to be 10,000 ug/l.

Joseph G. Lombardo, L.S.P.

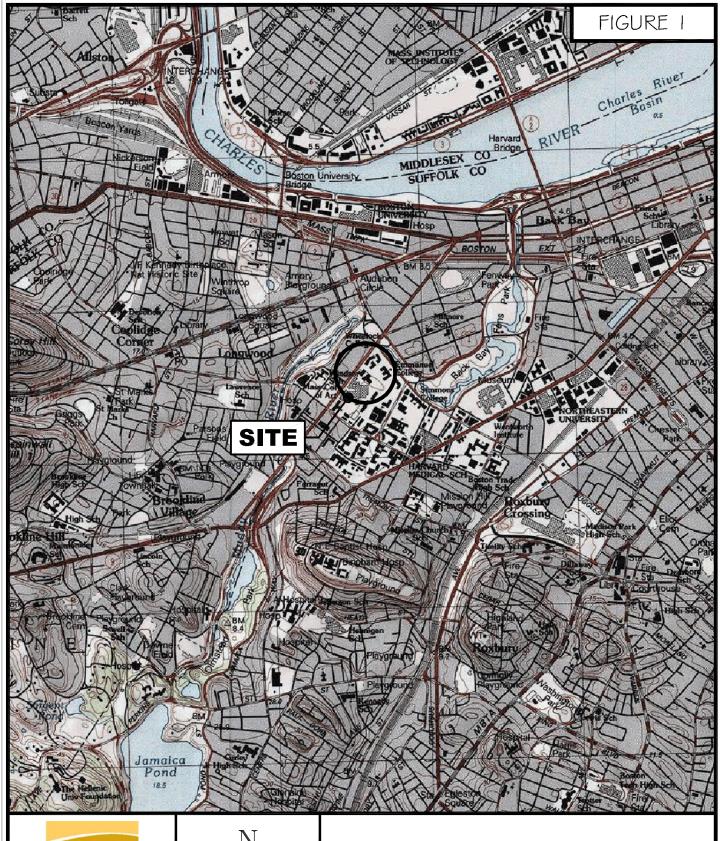
Groundwater Treatment

As previously mentioned the treatment of groundwater will be necessary to meet the applicable effluent limits established by the US EPA during construction dewatering prior to off-site discharge. The treatment system is to consist of one (1) sediment settling tank with a minimum capacity of 5,000-gallons and bag filters placed in-series. A schematic of the treatment system is shown on **Figure 4**.

Summary and Conclusions

The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Dewatering General Permit for off-site discharge of dewatered groundwater which will be encountered during the residential and commercial redevelopment located at Julie Hall at Emmanuel College in Boston, Massachusetts.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable effluent limits established by the US EPA. The proposed construction dewatering effluent system will consist of one (1) sediment settling tank with a minimum capacity of 5,000-gallons and bag filters in-series to maintain levels of TSS within the limits established Massachusetts DGP. However, if required additional mitigative measures will be implemented to meet the allowable discharge limits.


We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

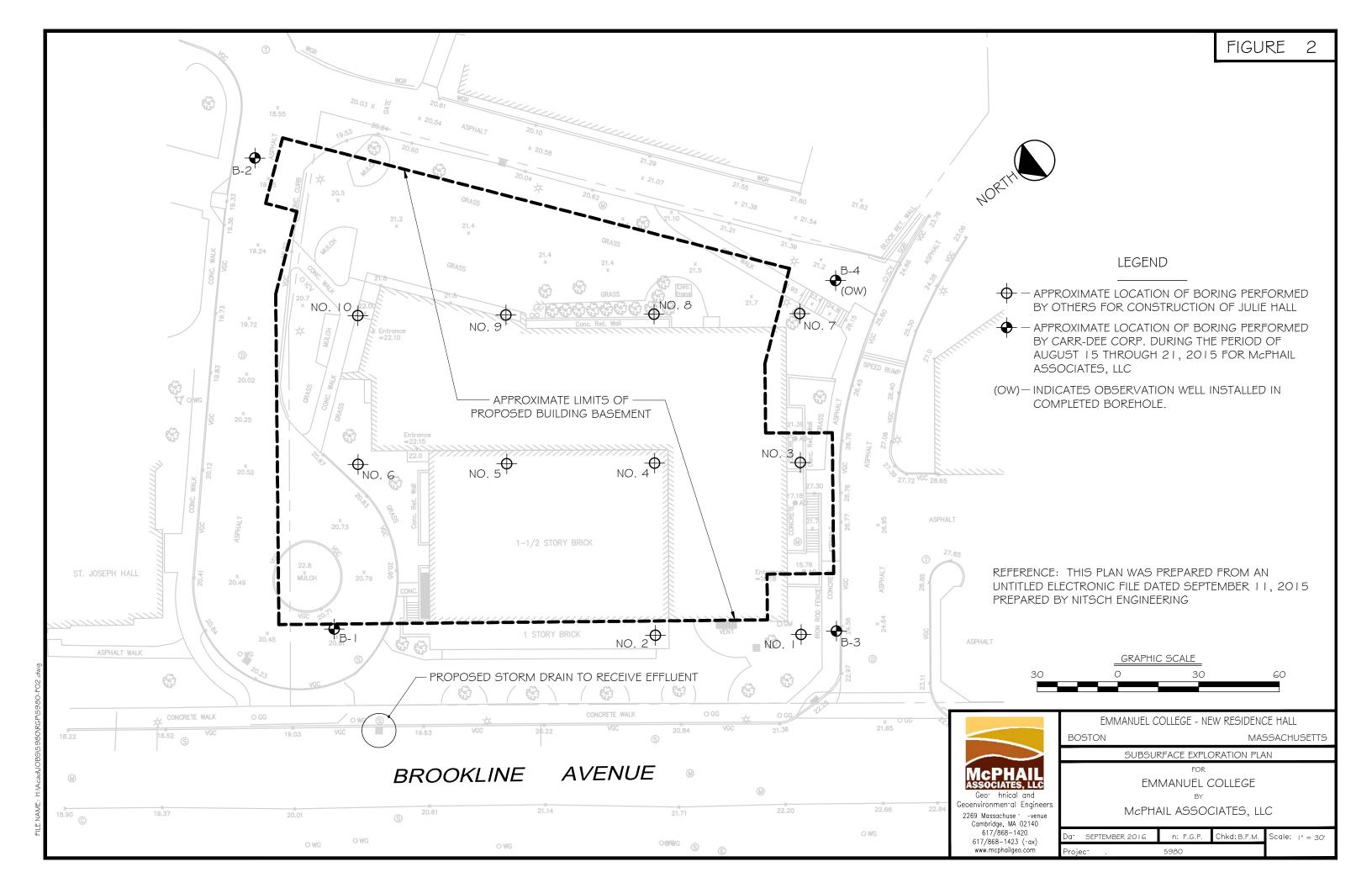
Very truly yours,

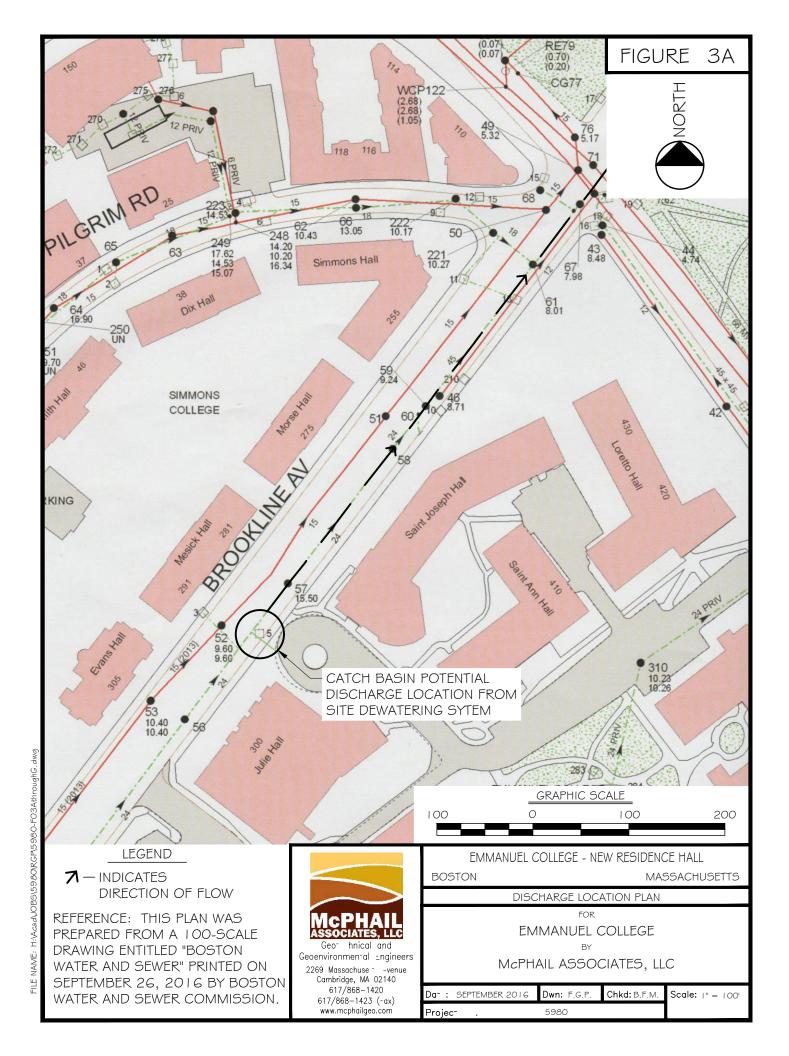
McPHAIL ASSOCIATES, LLC

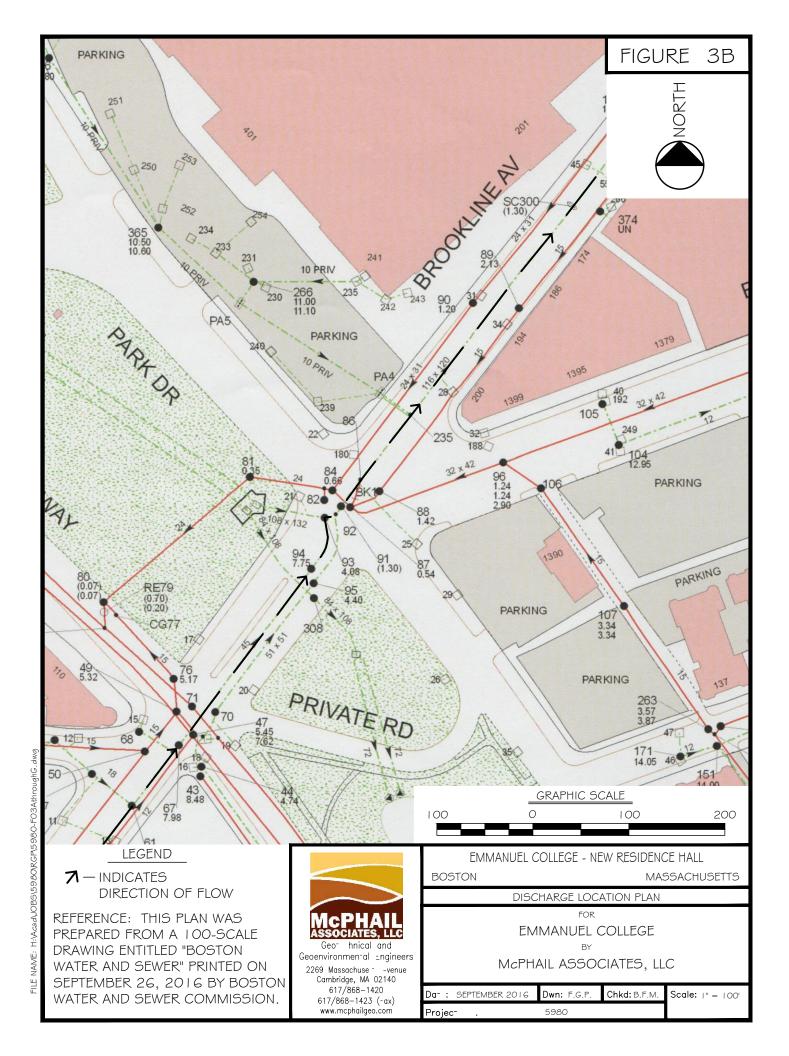
Brian Fong-Murdock

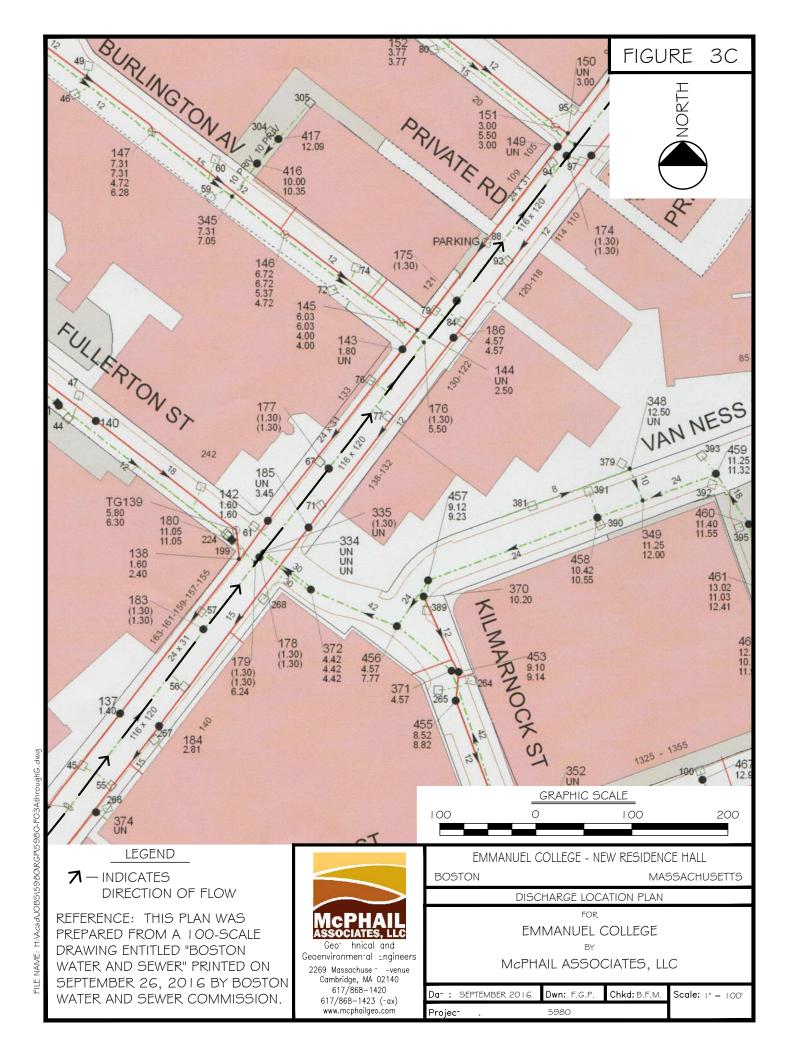
F:\WP5\REPORTS\5980 DGP 092716.docx BFM/jgl

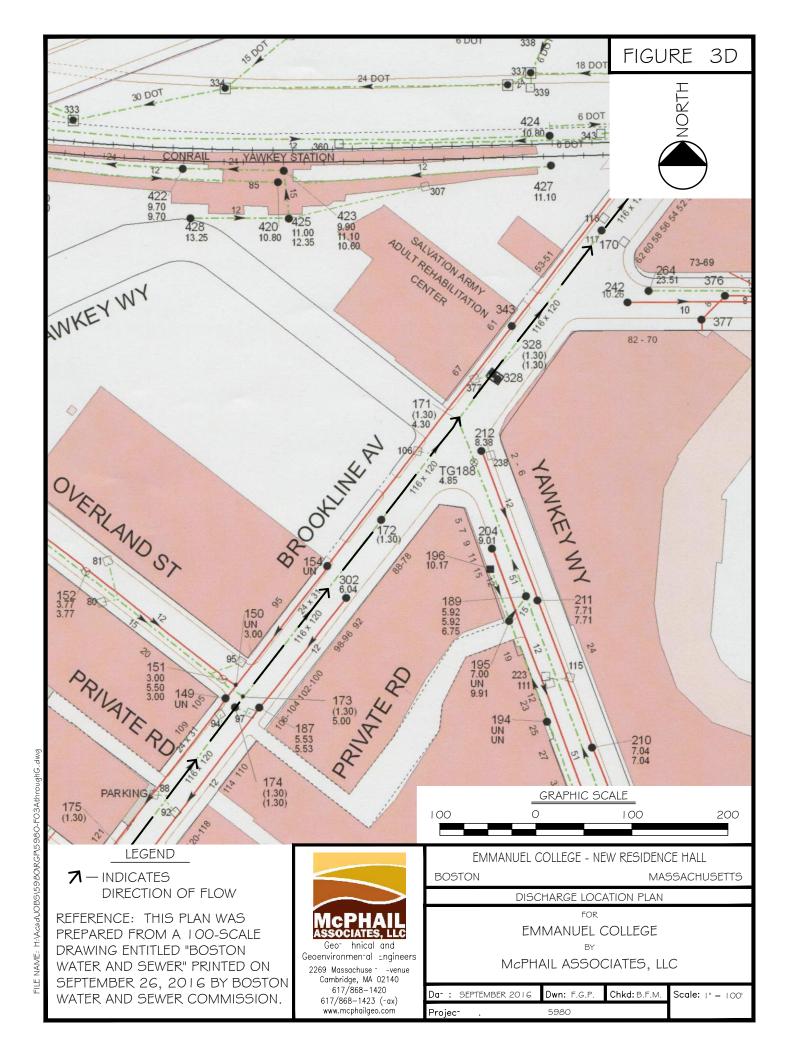
Geoenvironmental Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868–1420 617/868–1423 (Fax) www.mcphailgeo.com

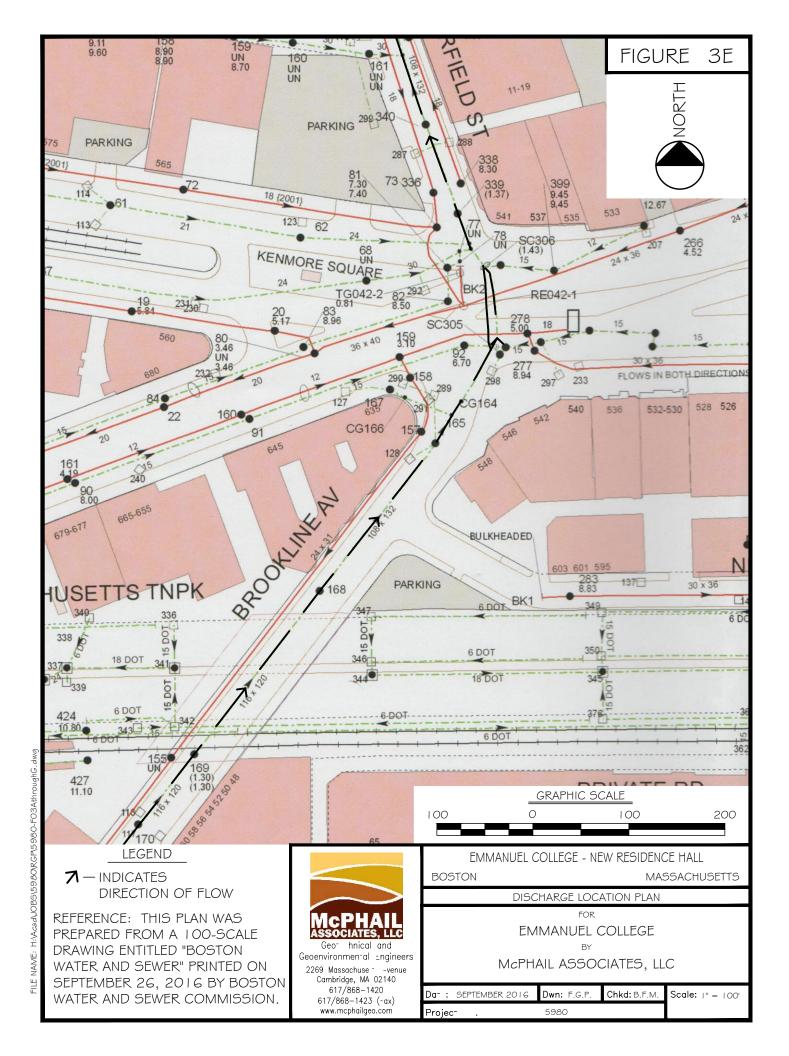


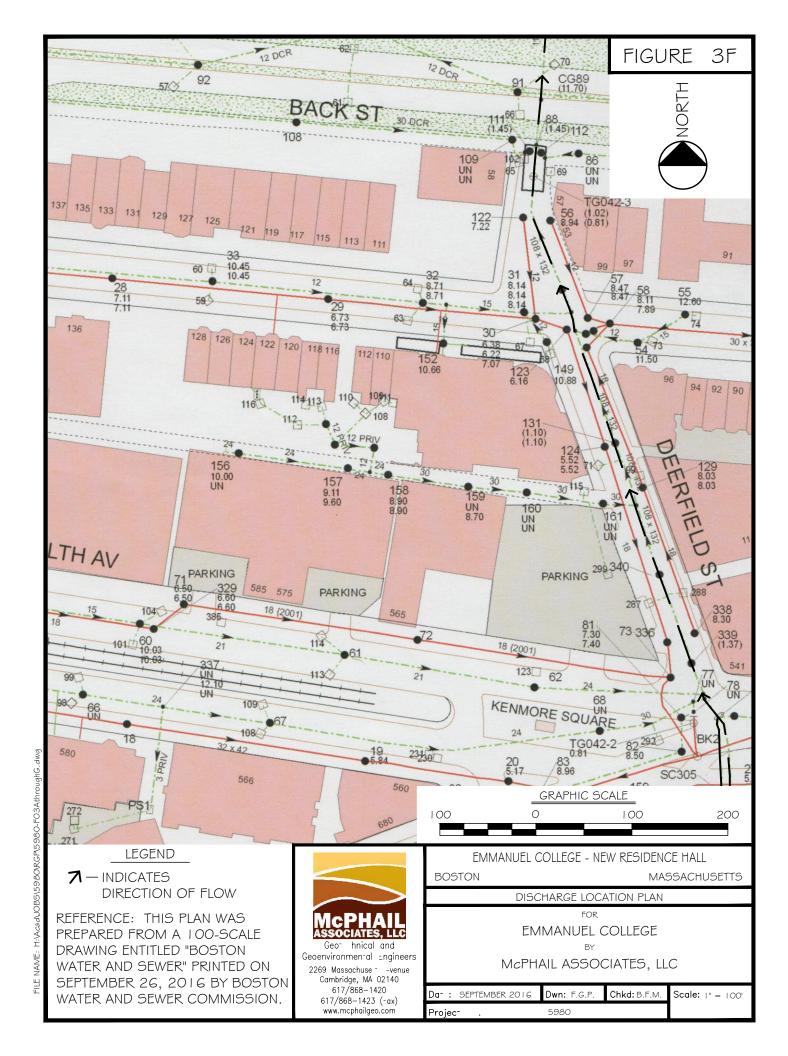

PROJECT LOCATION PLAN

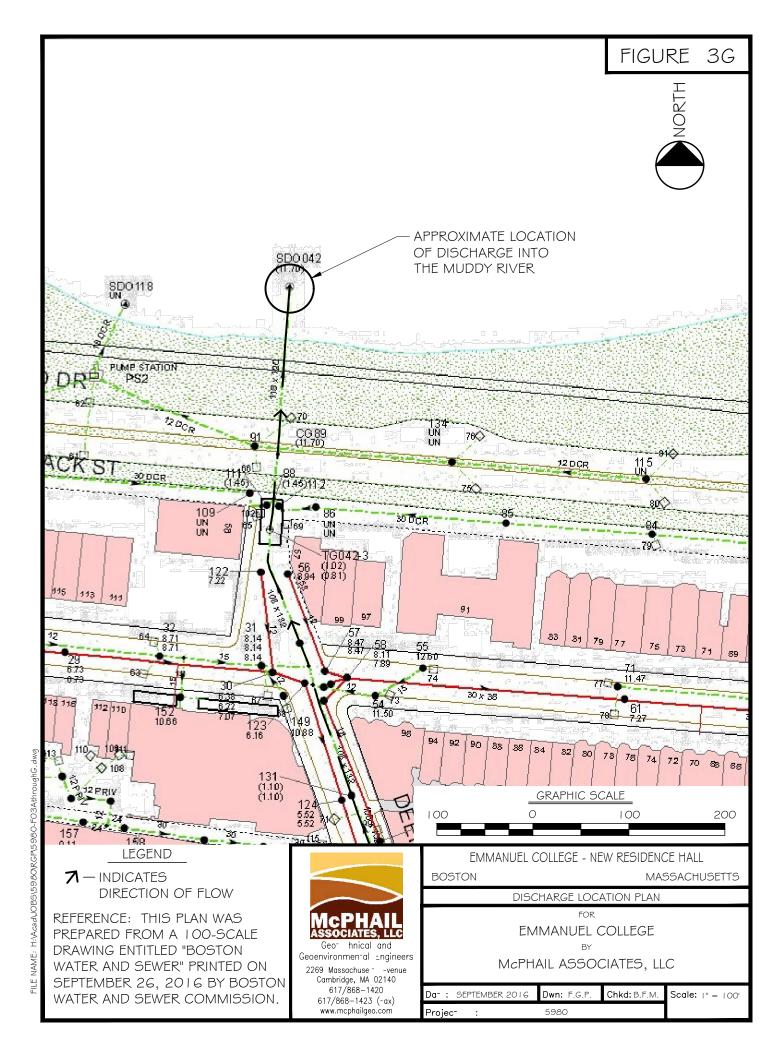

EMMANUEL COLLEGE NEW RESIDENCE HALL

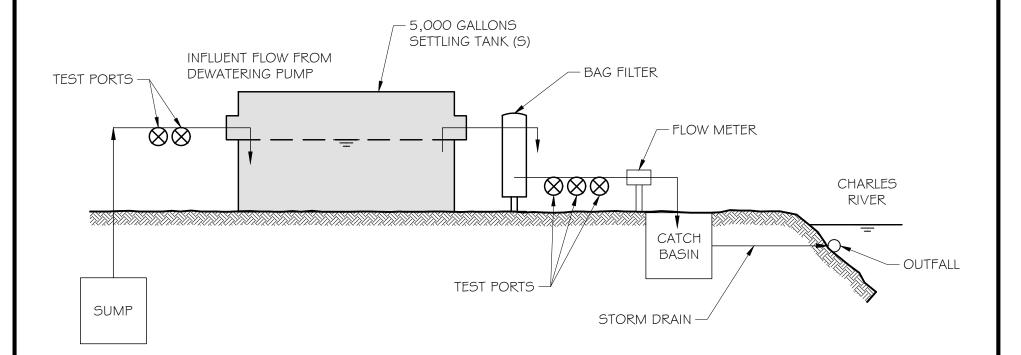

BOSTON


MASSACHUSETTS









EMMANUEL COLLEGE - NEW RESIDENCE HALL

BOSTON MASSACHUSETTS

SCHEMATIC OF WATER FLOW

FOR

EMMANUEL COLLEGE

BY

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

Da-: SEPTEMBER 2016 Dwn: F.G.P. Chkd: B.F.M.

Project No: 5980

Scale: N.T.S.

Table - 1 Analytical Results - Groundwater

New Residence Hall, Emmanuel College, Boston Massachusetts Project No. 5980

LOCATION	1	I	R-4 (OW) S 1	R-4 (OW) S 1	B-4 (OW) S-1
SAMPLING DATE	RCGW-2				
LAB SAMPLE ID	Limits	DGP LIMITS	7/21/2016	7/27/2016	8/18/2016 L1625934-01
_			L1022//4-U1	L1023371-U1	L1025934-01
General Chemistry	1	20.000	120000	ı	10000
Total Suspended Solids (ug/l)		30,000	130000	-	10000
Chloride		Monitor Only	670000	-	-
Total Cyanide (ug/l)		5.2	ND(6.3)	-	-
Total Residual Chlorine (ug/l)		11	ND(10)	-	-
pH (H) (SU)		6.5-8.3	6.3	-	6.2
Total Phenolics (ug/l)			91	-	-
Hexavalent Chromium (ug/l)		11.4	ND(5)	-	-
Microextractables by GC					
1,2-Dibromoethane (ug/l)	2		ND(0.005)	-	-
SUM			ND	-	-
Polychlorinated Biphenyls by GC (ug/l)					
SUM		0.000064	ND	-	-
Semivolatile Organics by GC/MS (ug/l)					
SUM			ND	-	_
Semivolatile Organics by GC/MS-SIM (ug/l)					
SUM			ND	-	-
Total Metals (ug/l)	•	•			•
Total Antimony	8	5.6	ND(1)	-	ND(25)
Total Arsenic	0.9	10	4.4	-	ND(2.5)
Total Cadmium	0.004	0.2	ND(0.1)	_	ND(2)
Total Chromium	0.3	0.2	11.1	_	ND(5)
Total Copper	100	5.2	27.8	_	ND(5)
Total Iron	100	1000	8510	_	3100
Total Lead	0.01	1.3	17.5	_	ND(5)
Total Mercury	0.02	0.9	ND(0.1)	_	ND(0.1)
Total Nickel	0.2	29	8.8	_	ND(12.5)
Total Selenium	0.1	5	ND(2.5)	_	ND(5)
Total Silver	0.007	1.2	ND(0.2)	_	ND(3.5)
Total Zinc	0.9	66.6	48.9	_	ND(25)
MCP Dissolved Metals (ug/l)	0.5	00.0	1015	I	(20)
Dissolved Antimony	8	5.6	-	_	ND(25)
Dissolved Arsenic	900	3.0	_	_	ND(2.5)
Dissolved Cadmium	4	0.2	_	_	ND(2)
Dissolved Chromium	300	0.2	_	_	ND(5)
Dissolved Copper	100	5.2	_	_	ND(5)
Dissolved Iron	100	1000	_	_	100
Dissolved Lead	10	1.3	_	_	ND(5)
Dissolved Mercury	20	1.5	_	_	ND(0.1)
Dissolved Nickel	0.2		_	_	ND(12.5)
Dissolved Nickel Dissolved Selenium	100		_	_	ND(12.5)
Dissolved Selement Dissolved Silver	7	0.2		_	ND(3.5)
Dissolved Zinc	0.9	0.2	-		ND(3.3) ND(25)
Volatile Organics by GC/MS (ug/l)	0.9				ND(23)
Acetone	50000		5.2	_	_
SUM	30000	+	5.2	_	
Volatile Organics by GC/MS-SIM (ug/l)	1		٦.۷		_
	6000	1	ND(1 E)	<u> </u>	
1,4-Dioxane SUM	6000	1	ND(1.5)	-	-
				-	-
Petroleum Hydrocarbon Quantitation (ug/l)	F000	T		ND(100)	
TPH	5000			ND(100)	-

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from a groundwater monitoring well on the property located at Emmanuel College in Boston, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Dewatering General Permit MAG070000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Emmanuel College. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT - NPDES DEWATERING GENERAL PERMIT BOSTON WATER & SEWER DEWATERING DISCHARGE PERMIT APPLICATION

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility. a) Name of facility: Mailing Address for the Facility: New Residence Hall 400 The Fenway b) Location Address of the Facility (if different from mailing **Facility Location** Type of Business: address): longitude: -71.1038 Facility SIC codes: latitude: 42.3415 Owner's email: donovan@emmanuel.edu c) Name of facility owner: _Emmanuel College Owner's Tel #: 617-732-1681 _____Owner's Fax #: _____ Address of owner (if different from facility address) Owner is (check one): 1. Federal____2. State _____ 3. Private _____ 4. Other _____(Describe)______ Legal name of Operator, if not owner: _SAME_____ Operator Contact Name: Operator Tel Number: Fax Number: Operator's email: Operator Address (if different from owner) d) Attach a topographic map indicating the location of the facility and the outfall(s) to the receiving water. Map attached? e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? Yes ____ No_✓_ If Yes, Permit Number: _____ 2. Is the discharge a "new discharger" as defined by 40 CFR Section 122.2? Yes No ✓ 3. Is the facility covered by an individual NPDES permit? Yes No ✓ If Yes, Permit Number 4. Is there a pending application on file with EPA for this discharge? Yes _____ No _ ✓ _ If Yes, date of submittal:

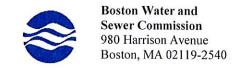
2. Discharge information. Please provide information about the discharge, (attaching additional sheets as needed)	
a) Name of receiving water into which discharge will occur: Charles River	
State Water Quality Classification: Class B Freshwater: X Marine Water:	
b) Describe the discharge activities for which the owner/applicant is seeking coverage:	
✓ 1. Construction dewatering of groundwater intrusion and/or storm water accumulation.	
2. Short-term or long-term dewatering of foundation sumps.	
3. Other.	
c) Number of outfalls _1	
For each outfall:	
d) Estimate the maximum daily and average monthly flow of the discharge (in gallons per day – GPD). Max Daily Flow <u>72,000</u> GPD Average Monthly Flow <u>54,000</u> GPD	
e.) What is the maximum and minimum monthly pH of the discharge (in s.u.)? Max pH <u>8.3</u> Min pH <u>6.5</u>	
f.) Identify the source of the discharge (i.e. potable water, surface water, or groundwater). If groundwater, the facility shall submit effluent test resurequired in Section 4.4.5 of the General Permit. Groundwater (see attached report)	ılts, as
g.) What treatment does the wastewater receive prior to discharge? Sedimentation Settling Tank and Bag Filters in series (see attached repo	ort)
h.) Is the discharge continuous? Yes No ✓ If no, is the discharge periodic (P) (occurs regularly, i.e., monthly or seasonally,	but is
not continuous all year) or intermittent (I) (occurs sometimes but not regularly) or both (B)	
If (P), number of days or months per year of the discharge and the specific months of discharge;	
If (I), number of days/year there is a discharge <u>5-7 days/we</u> ek	
Is the discharge temporary? Yes ✓ No	
If yes, approximate start date of dewatering October 17, 2016 approximate end date of dewatering April 10, 2017	
i.) Latitude and longitude of each discharge within 100 feet (See http://www.epa.gov/tri/report/siting_tool): Outfall 1: long71.097 lat. 42.351; O	utfall
2: long; Outfall 3: long lat	
j.) If the source of the discharge is potable water, please provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water	and
attach any calculation sheets used to support stream flow and dilution calculations cfs	
(See Appendix VIII for equations and additional information)	

MASSACHUSEITS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern
(ACEC):
k.) Does the discharge occur in an ACEC? Yes No✓ If yes, provide the name of the ACEC:
3. Contaminant Information
a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAFL and/or LC ₅₀ in percent for aquatic organism(s)). NO
b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.
4. Determination of Endangered Species Act Eigibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.
a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? A b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation
5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:
a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes No /_; Question 2: No Yes
b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes or No If yes, attach the results of the consultation(s).
c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met? A
d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes or No _√_ If yes, provide that name of the Indian Tribe associated with the property
6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit
7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (s ee below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: New Residence Hall - Emmanuel College


Operator signature: S. Anne M. Donovan

Print Full Name and Title: SV. ANNE M. DONOVON, VP of FNance/Treasurer

Date: 9/30/16

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

DEWATERING DISCHARGE PERMIT APPLICATION

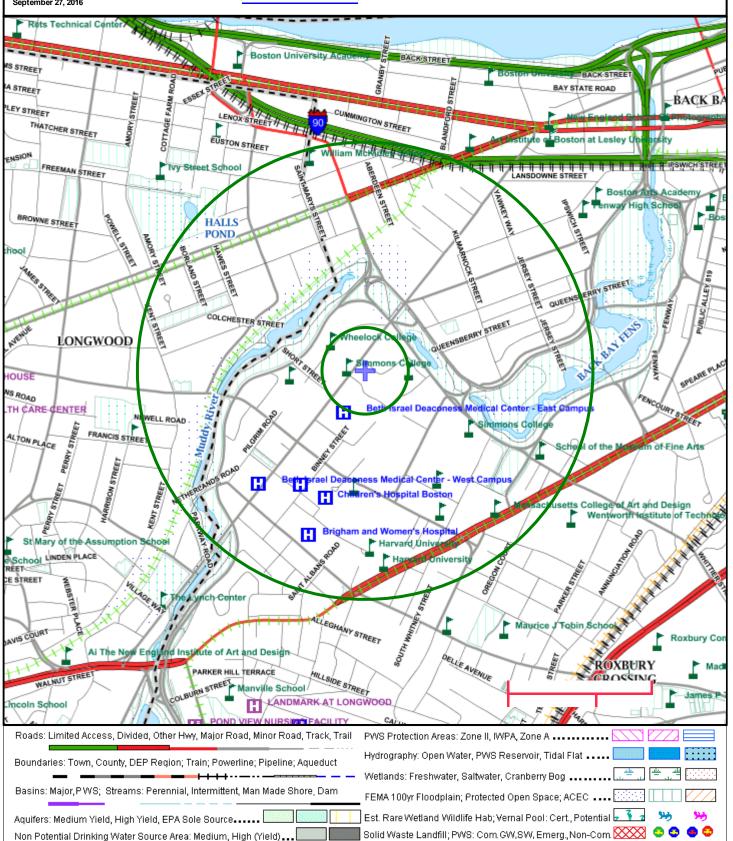
OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE: Company Name: Emmanuel College Address: 400 The Fenway Phone Number: 617-732-1681 Fax number: Contact person name: Sister Anne Donovan Title: VP of Finance and Treasury Cell number: _____ Email address: donovan@emmanuel.edu Permit Request (check one): ☑ New Application ☐ Permit Extension ☐ Other (Specify): -----Owner's Information (if different from above): Owner of property being dewatered: _SAME Owner's mailing address: _____ Phone number: ____ _____ Location of Discharge & Proposed Treatment System(s): Street number and name: 304 Brookline Avenue Neighborhood Boston Discharge is to a: ☐ Sanitary Sewer ☐ Combined Sewer ☑ Storm Drain ☐ Other (specify): Describe Proposed Pre-Treatment System(s): Sediment Settling Tank and Bag Filters BWSC Outfall No. SDO 042 Receiving Waters Charles River Temporary Discharges (Provide Anticipated Dates of Discharge): From To ☐ Groundwater Remediation □ Tank Removal/Installation ₩ Foundation Excavation ☐ Utility/Manhole Pumping □ Test Pipe □ Trench Excavation □ Accumulated Surface Water □ Hydrogeologic Testing □ Other Permanent Discharges ☐ Foundation Drainage □ Crawl Space/Footing Drain ☐ Accumulated Surface Water □ Non-contact/Uncontaminated Cooling □ Non-contact/Uncontaminated Process □ Other; 1. Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission **Engineering Customer Services** 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716 Date: 9/30/16 Signature of Authorized Representative for Property Owner: A. am M-

APPENDIX C:

MASSACHUSETTS PHASE I SITE ASSESSMENT MAP MASSACHUSETTS AREAS OF ENVIRONMENTAL CONCERN

IPAC TRUST RESOURCE REPORT AND CORRESPONDENCE WITH U.S. FISH AND WILDFLIFE SERVICE

MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

BOSTON, MA

NAD83 UTM Meters: 4689800mN , 326652mE (Zone: 19) September 27, 2016 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

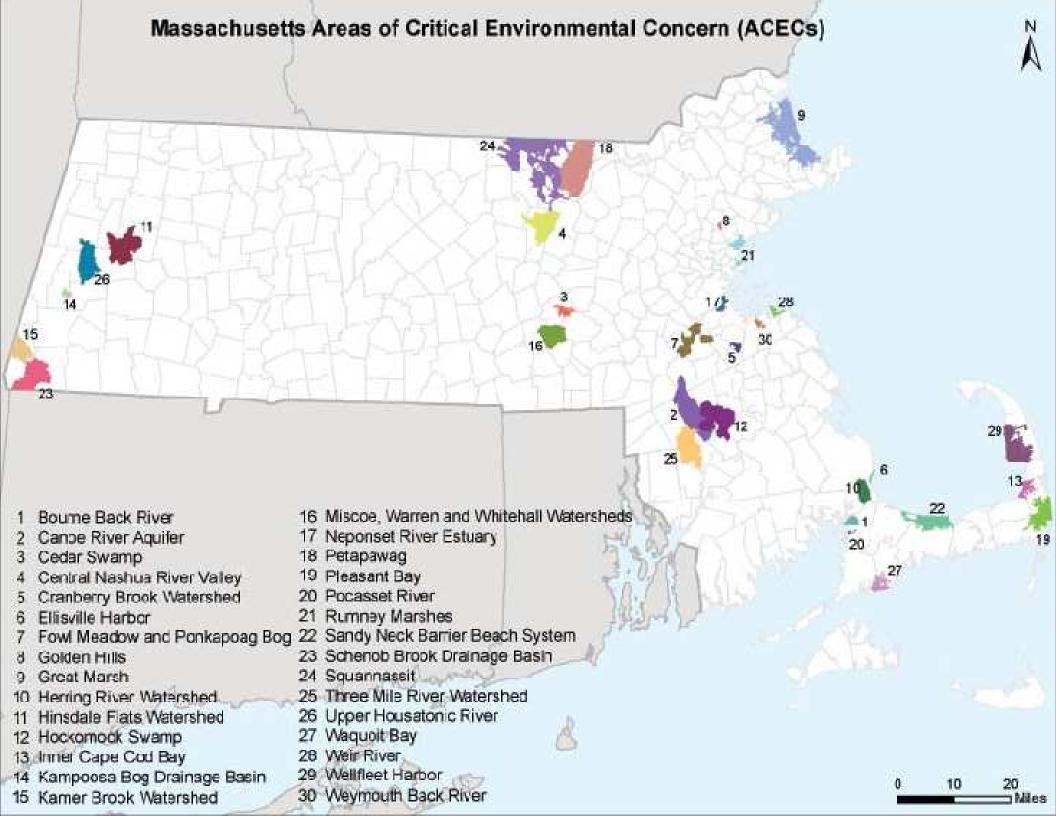
Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River


(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

June 2009

Squannassit Petapawag Squannassit Sandy Neck Barrier Beach System	Mt. Washington Newbury	Karner Brook Watershed Schenob Brook
Squannassit Sandy Neck Barrier Beach System	Newburv	Schenob Brook
Sandy Neck Barrier Beach System	Newbury	
		Great Marsh
Control Nochus Diver Valley	Norton	Hockomock Swamp
Central Nashua River Valley		Canoe River Aquifer
Rumney Marshes		Three Mile River Watershed
Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
Neponset River Estuary	Orleans	Inner Cape Cod Bay
Pocasset River		Pleasant Bay
Bourne Back River	Pepperell	Petapawag
	_	Squannassit
		Hinsdale Flats Watershed
		Upper Housatonic River
	Plymouth	Herring River Watershed
		Ellisville Harbor
		Neponset River Estuary
	•	Fowl Meadow and Ponkapoag Bog
		Hockomock Swamp
		Rumney Marshes
		Great Marsh
		Sandy Neck Barrier Beach System
	Saugus	Rumney Marshes
	0.1	Golden Hills
	Sharon	Canoe River Aquifer
	01 (6.11	Fowl Meadow and Ponkapoag Bog
• • • • • • • • • • • • • • • • • • •		Schenob Brook
		Squannassit
		Kampoosa Bog Drainage Basin
Waquoit Bay	raunton	Hockomock Swamp
		Canoe River Aquifer
	T	Three Mile River Watershed
		Wellfleet Harbor
		Squannassit
		Petapawag Miscoe-Warren-Whiteha ll
	Οριστι	Watersheds
	Wakafiald	Golden Hills
		Hinsdale Flats Watershed
•	washington	Upper Housatonic River
	Wallflaat	Wellfleet Harbor
		Hockomock Swamp
		Cedar Swamp
		Fowl Meadow and Ponkapoag Bog
		Weymouth Back River
		Rumney Marshes
•	· · · · · · · · · · · · · · · · · · ·	ranno, marenee
HOFFIHER WHEN FINOR POOR FOR SOME FOR THE CONTROL OF THE CONTROL O	Bourne Back River Herring River Watershed Cranberry Brook Watershed Pleasant Bay nner Cape Cod Bay Hockomock Swamp Fowl Meadow and Ponkapoag Bog Pleasant Bay Weir River Hinsdale Flats Watershed Fowl Meadow and Ponkapoag Bog Three Mile River Watershed Petapawag nner Cape Cod Bay Wellfleet Harbor Canoe River Aquifer Hockomock Swamp Karner Brook Watershed Great Marsh Waquoit Bay Canoe River Aquifer Great Marsh Miscoe-Warren-Whitehall Watersheds Petapawag Squannassit Pleasant Bay Weir River Weymouth Back River Hinsdale Flats Watershed Cranberry Brook Watershed Cranberry Brook Watershed Miscoe-Warren-Whitehall Watersheds Cedar Swamp Weir River Great Marsh Central Nashua River Valley Squannassit Kampoosa Bog Drainage Basin Jpper Housatonic River Jpper Housatonic River Central Nashua River Valley Squannassit Rumney Marshes Canoe River Aquifer Waquoit Bay Golden Hills Fowl Meadow and Ponkapoag Bog Neponset River Estuary	Herring River Watershed Cranberry Brook Watershed Pleasant Bay Pleasant Bay Plockomock Swamp Fowl Meadow and Ponkapoag Bog Pleasant Bay Weir River Hinsdale Flats Watershed Petapawag Petapawag Plockomock Swamp Randolph Revere Raynham Revere Rowley

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	Ail Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
2110101	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a scasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampton
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small wherled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied	Endangered	Inland Ponds and Rivers	Kingston, Middleberough, Carver, Plymouth, Bourne, and Wareham
· .	Roseate Tern	Endangered	Coastal beaches and the Atlantic Occan	Plymouth, Merion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

7/31/2008

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

APPENDIX E

AREAS OF CRITICAL CONCERN, ENDANGERED AND THREATENED SPECIES

There are no surface water bodies or wetlands located within the subject site boundaries. The nearest surface water body is the Charles River, located about 800 feet to the south of the subject site. Groundwater at the subject site is not considered a current or a potential source of drinking water, and the subject site is not located within minimum distances from drinking water sources as prescribed by the MCP. There are no known public or private drinking water supply wells located within the boundaries of the subject site nor are such wells known to be located within 0.5 miles of the subject site. The site is not located within Zone II, Interim Wellhead Protection Area or within Zone A of a Class A surface water reservoir. There are no Areas of Critical Environmental Concern (ACEC) located within the site boundaries..

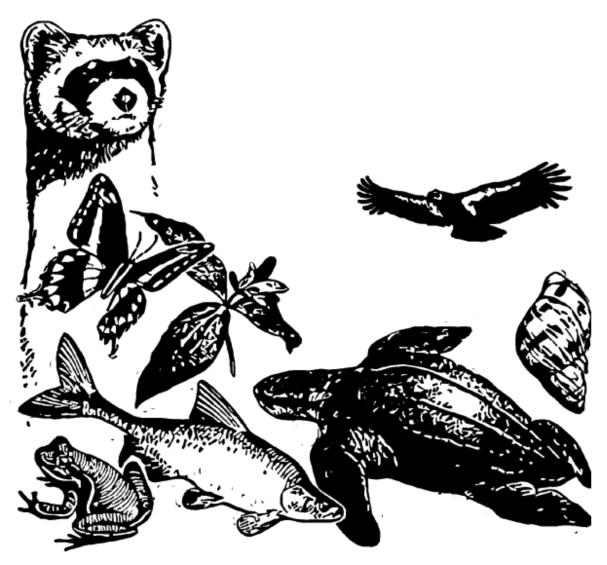
A review of the federal listing of threatened and endangered species published by the U.S. Fish and Wildlife Service identified no threatened and/or endangered species or critical habitats at or in the vicinity of the discharge location and/or discharge outfall. In addition, a review of the Massachusetts Division of Fisheries and Wildlife on-line database identified no threatened or endangered species at the point of discharge and/or the discharge outfall.

Based upon the above, the site is considered criterion A pursuant to Appendix III of the DGP.

APPENDIX F

NATIONAL REGISTER OF HISTORIC PLACES

The National Register of Historic Places on-line database was reviewed for listings located within the immediate vicinity of the subject site in Boston, Massachusetts. A review of the most recent National Register of Historical Places for Middlesex County, Massachusetts did not identify records or addresses of Historic Places that exist in the immediate vicinity of the outfall location. The nearest listing of a National Historic Place to the subject site is the Harvard Square Historic District located approximately 1000 feet to the northeast of the subject site. We do not anticipate that dewatering activities at the subject site will affect the Harvard Square Historic District.


Based upon the above, the site is considered Criterion 1 pursuant to Appendix III of the DGP.

Emmanuel College 5980

IPaC Trust Resources Report

Generated September 26, 2016 09:40 AM MDT, IPaC v3.0.9

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (https://ecos.fws.gov/ipac/): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

Table of Contents

PaC Trust Resources Report		1
Project Description		1
Endangered Species	2	2
Migratory Birds		3
Refuges & Hatcheries	5	5
Wetlands	6	ĉ

U.S. Fish & Wildlife Service

IPaC Trust Resources Report

FISH & WILDLIFE SERVICE

NAME

Emmanuel College 5980

LOCATION

Suffolk County, Massachusetts

DESCRIPTION

New Residence Hall

IPAC LINK

https://ecos.fws.gov/ipac/project/ 7QBJA-RJ5JR-FVBBP-L6RTX-OUKGIQ

U.S. Fish & Wildlife Service Contact Information

Trust resources in this location are managed by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

There are no endangered species in this location

Critical Habitats

There are no critical habitats in this location

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish & Wildlife Service.^[1] There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern
 http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Conservation measures for birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Year-round bird occurrence data http://www.birdscanada.org/birdmon/default/datasummaries.isp

The following species of migratory birds could potentially be affected by activities in this location:

American Oystercatcher Haematopus palliatus

Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0G8

American Bittern Botaurus lentiginosus Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F3

Bald Eagle Haliaeetus leucocephalus Bird of conservation concern

On Land Season: Year-round

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008

Black-billed Cuckoo Coccyzus erythropthalmus Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HI

Blue-winged Warbler Vermivora pinus

Bird of conservation concern

On Land Season: Breeding

Canada Warbler Wilsonia canadensis

Bird of conservation concern

On Land Season: Breeding

Hudsonian Godwit Limosa haemastica Bird of conservation concern

At Sea Season: Migrating

Least Bittern Ixobrychus exilis

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092

Olive-sided Flycatcher Contopus cooperi Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN

Peregrine Falcon Falco peregrinus

Bird of conservation concern

On Land Season: Wintering

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU

Pied-billed Grebe Podilymbus podiceps

Bird of conservation concern

On Land Season: Breeding

Prairie Warbler Dendroica discolor Bird of conservation concern

On Land Season: Breeding

Purple Sandpiper Calidris maritima

Bird of conservation concern

On Land Season: Wintering

Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern

On Land Season: Breeding

Seaside Sparrow Ammodramus maritimus

Bird of conservation concern

On Land Season: Breeding

Short-eared Owl Asio flammeus Bird of conservation concern

On Land Season: Wintering

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD

Snowy Egret Egretta thula

Bird of conservation concern

On Land Season: Breeding

Upland Sandpiper Bartramia longicauda Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HC

Willow Flycatcher Empidonax traillii Bird of conservation concern

On Land Season: Breeding

http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6

Wood Thrush Hylocichla mustelina Bird of conservation concern

On Land Season: Breeding

Worm Eating Warbler Helmitheros vermivorum

Bird of conservation concern

On Land Season: Breeding

Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> Corps of Engineers District.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

There are no wetlands in this location

APPENDIX D: LABORATORY REPORTS

ANALYTICAL REPORT

Lab Number: L1623371

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: John Erikson
Phone: (617) 868-1420

Project Name: EMMANUEL COLLEGE

Project Number: 5980.9.01

Report Date: 08/01/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08011615:06

Project Name: EMMANUEL COLLEGE

Project Number: 5980.9.01

Lab Number:

L1623371

Report Date:

08/01/16

Alpha Sample ID	Client ID Matrix		Sample Location	Collection Date/Time	Receive Date
I 1623371-01	B-4 (OW) S-1	WATER	BOSTON. MA	07/27/16 12:00	07/27/16

Project Name: EMMANUEL COLLEGE Lab Number: L1623371

Project Number: 5980.9.01 **Report Date:** 08/01/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status										
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES								
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES								
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES								

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1623371

Lab Number:

Project Name: EMMANUEL COLLEGE

Project Number: 5980.9.01 Report Date: 08/01/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	lease	contact	Client	Services	at 80	0-624-9220) with	any q	uestions.	

Serial_No:08011615:06

Project Name: EMMANUEL COLLEGE Lab Number: L1623371

Project Number: 5980.9.01 **Report Date:** 08/01/16

Case Narrative (continued)

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 08/01/16

ORGANICS

PETROLEUM HYDROCARBONS

Serial_No:08011615:06

Project Name: EMMANUEL COLLEGE Lab Number: L1623371

Project Number: 5980.9.01 **Report Date:** 08/01/16

SAMPLE RESULTS

 Lab ID:
 L1623371-01
 Date Collected:
 07/27/16 12:00

 Client ID:
 B-4 (OW) S-1
 Date Received:
 07/27/16

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8015C(M) Extraction Date: 07/30/16 15:22

Analytical Date: 07/31/16 21:23
Analyst: DG

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbon Quantitation - W	estborough Lab						
ТРН	ND	ug/l	200		1		
Surrogate	% Recovery	Qualifier	Acceptance Criteria				

40-140

75

o-Terphenyl

Project Name: EMMANUEL COLLEGE

Project Number: 5980.9.01

Lab Number:

L1623371

Report Date:

08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8015C(M) 07/31/16 20:18

Analyst: DG

Extraction Method: EPA 3510C Extraction Date: 07/30/16 15:22

Parameter	Result	Qualifier	Units	RL	MDL		
Petroleum Hydrocarbon Quantitation	- Westbord	ough Lab fo	r sample(s):	01	Batch:	WG918576-1	
TPH	ND		ug/l	200			

			Acceptance			
Surrogate	%Recovery	Qualifier	Criteria			
o-Terphenyl	81		40-140			

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L1623371

Project Number: 5980.9.01

Project Name:

EMMANUEL COLLEGE

Report Date: 08/01/16

Parameter	LCS %Recovery			%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbon Quantitation -	Westborough Lab Associ	iated sample(s): 01	Batch: WG918	3576-2				
TPH	89	-		40-140	-		40	

Surrogate	LCS %Recovery			Qual	Acceptance Criteria	
o-Terphenyl	88				40-140	

L1623371

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** EMMANUEL COLLEGE

Project Number: Report Date: 08/01/16 5980.9.01

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits Petroleum Hydrocarbon Quantitation - Westborough Lab Associated sample(s): 01 QC Batch ID: WG918576-3 QC Sample: L1623371-01 Client ID: B-4 (OW) S-1 ND 40 TPH ND ug/l NC

		Acceptance		
Surrogate	%Recovery (Qualifier %Recovery	Qualifier Criteria	
o-Terphenyl	75	78	40-140	

Serial_No:08011615:06

Project Name: EMMANUEL COLLEGE Lab Number: L1623371

Project Number: 5980.9.01 Report Date: 08/01/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1623371-01A	Amber 1000ml HCl preserved	Α	<2	3.0	Υ	Absent	TPH-DRO-D(7)
L1623371-01B	Amber 1000ml HCl preserved	Α	<2	3.0	Υ	Absent	TPH-DRO-D(7)

Project Name:EMMANUEL COLLEGELab Number:L1623371Project Number:5980.9.01Report Date:08/01/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or mainture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:EMMANUEL COLLEGELab Number:L1623371Project Number:5980.9.01Report Date:08/01/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:08011615:06

Project Name:EMMANUEL COLLEGELab Number:L1623371Project Number:5980.9.01Report Date:08/01/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08011615:06

Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHA	AIN OF	CUSTO	DY P	AGE/_	_OF/	Date R	Rec'd in	Lab: /	1/2	7/1	16	4	LPHA	A Job#	:L16:	2337	
8 Walkup Drive	320 Forbes Blvd		oject Informat	ion			Repo	rt Infor	mation	- Data	Delive	erable	CALL STREET, S		Informa	- Control of the control		
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA (02048 Pro	oject Name: E	MMANUE	COL	LEGE	XAD	Ex		EMAIL			×	Same	as Client	info PO	#:	
Client Information	on	Pro	oject Location:	BUSTON	1. M.	114							ect Info	rmatio	on Requ	irements	;	
Client: McPHA	AL ASSOCIATE	S. LLC Pro	oject#: 59	80.9.						Analytica			SDG2 (F	☐ Ye	s XNo	CT RCP A	nalytical Metho	ds
	MASS AVE		Project Manager: ERIKCANI				☐ Yes ☑ No Matrix Spike Required on this SDG? (Required for MCP Inorganics) ☐ Yes ☒ No GW1 Standards (Info Required for Metals & EPH with Targets) ☐ Yes ☒ No NPDES RGP											
	BRIDGE, MA	Al	LPHA Quote #:	_	_				PDES F						Criteria			
Phone: G17 868 1420 Turn-Around Time								/ /	2 3	/_/	./	///		11	11	1		
Email: iecik	son @ maphail a	po.com	·				١	/ /	ORC:	4	Soni		//	/ /	/ /			
Email: <u>jelikson@mcphailgoo.com</u>				RUSH (only o	onfirmed if pre-a	pproved!)	ANALYSIS	3	47	ا م	ange (ange	/ /	. Ingerprint		//	/ / /	/	T O
Additional F	Project Informat	ion:	Date Due:	TANDARD	TAT		AZ/	D 524.2 PAH	DMCP 14	RCR.	100		'''ger'	/ /	1-1	//:	SAMPLE INFO	-
							₹ / ¿	4/0/	5 2	arget	arget		i / /	/ /	/ /	/ /	<i>Filtration</i> □ Field	L #
								ABN	ACPA CPA	88 89	PEST	toms	/ /	//	/ /	/ /	☐ Lab to do	
							D8260 D 62	A S	3 3	Rang		Quan	I	/ /	//	/	Preservation ☐ Lab to do	O
ALPHA Lab ID	Sam	nple ID	2000/20000	ection	Sample		, VOC.	METALS: D. BN D.	METALS: URCP 13 UNCP 14 L	VPH: DRanges & Targets D Ros	D PCB D PEST THH. DPEST	To Chant Only	7 /		/ /		Lab to do	B O T T L E S
(Lab Use Only)			Date	Time	Matrix	Initials	/ 2 / 6		\ \(\bar{\pi}\)		Q/E		$\overline{-}$	/ /		Sam	ple Comments	
233/101	B-4(OW)	5-1	7/27	12:00	W	NOH			_			X						2
												200	-					
									110									\Box
					***************************************						+							
		Ÿ.							+					1-1				+
														+				
Container Type	Preservative												-	+ +		-		\perp
Container Type P= Plastic A= Amber glass	A= None B= HCI			-		ainer Type						A						
V= Vial G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	5	elinquished By:		7	eservative						B						
C= Cube O= Other E= Encore	C= Cube				7/23	e/Time	Sort	Rec	ceived B	y:	14	7/	Date/Tim	e L:Un			tted are subjec	t to
D= BOD Bottle	I= Ascorbic Âcid J = NH₄Cl	Rob	May to	ANY	7/27/16	1820	700	illi	1		TC	1/6	7/16/15	20	100 miles	Terms and erse side.	Conditions.	
Page 17 of 17	K= Zn Acetate O= Other	,		- -	, ,	(#) I			300	/				.]	FORM NO	01-01 (rev. 1)	2-Mar-2012)	030

ANALYTICAL REPORT

Lab Number: L1625934

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

08/24/16

Project Name: EMMANUEL
Project Number: 5980.9.01

Report Date:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: EMMANUEL Project Number: 5980.9.01

Lab Number: L1625934 **Report Date:** 08/24/16

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1625934-01 OW S-1 WATER BOSTON, MA 08/18/16 10:00 08/18/16

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status								
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES							
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES							
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:08241617:44

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

Case Narrative (continued)

MCP Related Narratives

Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/24/16

Custen Walker Cristin Walker

METALS

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

SAMPLE RESULTS

Lab ID: L1625934-01
Client ID: OW S-1
Sample Location: BOSTON, MA

Matrix: Water

Date Collected: 08/18/16 10:00
Date Received: 08/18/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Mansfiel	d Lab									
Antimony, Total	ND		mg/l	0.050		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Arsenic, Total	ND		mg/l	0.005		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Cadmium, Total	ND		mg/l	0.004		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Chromium, Total	ND		mg/l	0.01		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Copper, Total	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Iron, Total	3.1		mg/l	0.05		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Lead, Total	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Mercury, Total	ND		mg/l	0.0002		1	08/19/16 09:16	08/22/16 17:45	EPA 7470A	97,7470A	EA
Nickel, Total	ND		mg/l	0.025		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Selenium, Total	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Silver, Total	ND		mg/l	0.007		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
Zinc, Total	ND		mg/l	0.050		1	08/19/16 08:45	08/19/16 13:17	EPA 3005A	97,6010C	PS
MCP Dissolved Me	tals - Mar	nsfield Lab									
Antimony, Dissolved	ND		mg/l	0.050		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Arsenic, Dissolved	ND		mg/l	0.005		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Cadmium, Dissolved	ND		mg/l	0.004		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Chromium, Dissolved	ND		mg/l	0.01		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Copper, Dissolved	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Iron, Dissolved	0.10		mg/l	0.05		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Lead, Dissolved	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Mercury, Dissolved	ND		mg/l	0.0002		1	08/19/16 09:16	08/22/16 17:56	EPA 7470A	97,7470A	EA
Nickel, Dissolved	ND		mg/l	0.025		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Selenium, Dissolved	ND		mg/l	0.010		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Silver, Dissolved	ND		mg/l	0.007		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS
Zinc, Dissolved	ND		mg/l	0.050		1	08/19/16 08:45	08/19/16 13:12	EPA 3005A	97,6010C	PS

Project Name: Lab Number: **EMMANUEL** L1625934 Project Number: 5980.9.01

Report Date: 08/24/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab for s	ample(s):	01 Ba	tch: Wo	G924163-1				
Antimony, Dissolved	ND	mg/l	0.050		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Arsenic, Dissolved	ND	mg/l	0.005		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Cadmium, Dissolved	ND	mg/l	0.004		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Chromium, Dissolved	ND	mg/l	0.01		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Copper, Dissolved	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Iron, Dissolved	ND	mg/l	0.05		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Lead, Dissolved	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Nickel, Dissolved	ND	mg/l	0.025		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Selenium, Dissolved	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Silver, Dissolved	ND	mg/l	0.007		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Zinc, Dissolved	ND	mg/l	0.050		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals -	Mansfield Lab for samp	le(s): 01	Batch:	WG924	164-1				
Antimony, Total	ND	mg/l	0.050		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Arsenic, Total	ND	mg/l	0.005		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Cadmium, Total	ND	mg/l	0.004		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Chromium, Total	ND	mg/l	0.01		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Copper, Total	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Iron, Total	ND	mg/l	0.05		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Lead, Total	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Nickel, Total	ND	mg/l	0.025		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Selenium, Total	ND	mg/l	0.010		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Silver, Total	ND	mg/l	0.007		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS
Zinc, Total	ND	mg/l	0.050		1	08/19/16 08:45	08/19/16 13:00	97,6010C	PS

Serial_No:08241617:44

Project Name: EMMANUEL
Project Number: 5980.9.01

Lab Number: L1625934 **Report Date:** 08/24/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Total Metals - M	lansfield Lab for sampl	e(s): 01	Batch:	WG924	169-1				
Mercury, Total	ND	mg/l	0.0002		1	08/19/16 09:16	08/22/16 17:39	97,7470A	EA
			Prep Inf	ormatio	on				

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab for s	ample(s):	01 Ba	tch: Wo	G924170-1				
Mercury, Dissolved	ND	mg/l	0.0002		1	08/19/16 09:16	08/22/16 17:50	97,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: EMMANUEL

Lab Number: L1625934

Project Number: 5980.9.01

Report Date: 08/24/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Associa	ted sample(s): 01	Batch: V	VG924163-2 W	/G924163-3				
Antimony, Dissolved	98		100		80-120	2		20
Arsenic, Dissolved	109		113		80-120	4		20
Cadmium, Dissolved	111		110		80-120	1		20
Chromium, Dissolved	95		95		80-120	0		20
Copper, Dissolved	100		100		80-120	0		20
Iron, Dissolved	93		94		80-120	1		20
Lead, Dissolved	106		107		80-120	1		20
Nickel, Dissolved	100		100		80-120	0		20
Selenium, Dissolved	112		113		80-120	1		20
Silver, Dissolved	103		103		80-120	0		20
Zinc, Dissolved	101		101		80-120	0		20

Lab Control Sample Analysis Batch Quality Control

Project Name: EMMANUEL

Lab Number:

L1625934

Project Number: 5980.9.01

Report Date:

08/24/16

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Total Metals - Mansfield Lab Associated	sample(s): 01 Batch:	WG924164-2 WG924164-3			
Antimony, Total	98	100	80-120	2	20
Arsenic, Total	109	113	80-120	4	20
Cadmium, Total	111	110	80-120	1	20
Chromium, Total	95	95	80-120	0	20
Copper, Total	100	100	80-120	0	20
Iron, Total	93	94	80-120	1	20
Lead, Total	106	107	80-120	1	20
Nickel, Total	100	100	80-120	0	20
Selenium, Total	112	113	80-120	1	20
Silver, Total	103	103	80-120	0	20
Zinc, Total	101	101	80-120	0	20
MCP Total Metals - Mansfield Lab Associated	sample(s): 01 Batch:	WG924169-2 WG924169-3			
Mercury, Total	88	83	80-120	6	20
MCP Dissolved Metals - Mansfield Lab Associa	ited sample(s): 01 Ba	atch: WG924170-2 WG9241	70-3		
Mercury, Dissolved	88	86	80-120	2	20

INORGANICS & MISCELLANEOUS

Serial_No:08241617:44

08/19/16 00:39

MC

1,9040C

Project Name: EMMANUEL Lab Number: L1625934

Project Number: 5980.9.01 **Report Date:** 08/24/16

SAMPLE RESULTS

Lab ID: L1625934-01 Date Collected: 08/18/16 10:00

Client ID: OW S-1 Date Received: 08/18/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total Suspended 10. mg/l 5.0 NA 1 08/23/16 16:50 121,2540D SG

NA

1

SU

Matrix:

pH (H)

Water

6.2

Serial_No:08241617:44

Project Name:EMMANUELLab Number:L1625934

Project Number: 5980.9.01 **Report Date:** 08/24/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	Batch	: WG92	25209-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	08/23/16 16:50	121,2540D	SG

Lab Number: L1625934

Project Number: 5980.9.01 Report Date:

08/24/16

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG924075-1						
рН	100	-		99-101	-		5	

Project Name:

EMMANUEL

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1625934

Report Date:

08/24/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	ele(s): 01 QC Batch ID:	WG924075-2 QC S	Sample: L162593	34-01 Clie	ent ID: OW	/ S-1
pH (H)	6.2	6.2	SU	0		5

Project Name:

Project Number:

EMMANUEL

5980.9.01

Serial_No:08241617:44

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1625934-01A	Plastic 250ml HNO3 preserved	A	<2	3.5	Y	Absent	MCP-CR-6010T-10(180),MCP-7470T-10(28),MCP-AS-6010T-10(180),MCP-CD-6010T-10(180),MCP-AG-6010T-10(180),MCP-CU-6010T-10(180),MCP-SB-6010T-10(180),MCP-ZN-6010T-10(180),MCP-SE-6010T-10(180),MCP-NI-6010T-10(180),MCP-NI-6010T-10(180),MCP-PB-6010T-10(180),MCP-PB-6010T-10(180)
L1625934-01B	Plastic 250ml unpreserved	Α	7	3.5	Υ	Absent	-
L1625934-01C	Plastic 500ml unpreserved	Α	7	3.5	Υ	Absent	PH-9040(1)
L1625934-01D	Plastic 950ml unpreserved	Α	7	3.5	Υ	Absent	TSS-2540(7)
L1625934-01X	Plastic 120ml HNO3 preserved Fil	A	<2	3.5	Y	Absent	MCP-CD-6010S-10(180),MCP-FE-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-B-6010S-10(180),MCP-PB-6010S-10(180),MCP-CU-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180)

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:08241617:44

Project Name:EMMANUELLab Number:L1625934Project Number:5980.9.01Report Date:08/24/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08241617:44

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

mg 08/24/16	o updated CC)C											1						Ocha	11_1 10.	002-	1017.44	
ΔLPHA	CHA	AIN OF	CU	STO	DY ,	PAGE	OF	Dat	te Rec	d in La	ab: 8	11	81	1.	6		AL	.PH/	A Jot	o #: L	-16	12593	4
8 Walkup Drive	320 Forbes Blvd		Project	Informat	ion			Re	port	Inform	ation	- Dat	a De	liver	able	s	Bi	lling	Infor	rmatio	n		1
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA (02048 300	Project N	lame: En	MANU	EL		A	ADEx		_ D E	EMAIL					M S	3ame	as Cli	ient info	PO	#:	
Client Information	n		Project L		Boston			Re	gula	tory Re	equire	men	s 8	k P	roje	ct In	forr	matic	on Re	equirer	ments		
Client: McPHAIL	ASSOCIATES		Project #		0.9.01			M Y	′es □	No MA	MCP	Analyti	cal M	ethod	ds nic SI	വരാ	/Do	☐ Ye	s N	lo CTI ICP inc	RCP A	Analytical Metho	ds
Address: 2269			Project N		J. ERI			□ Y	es 💢	No GW	/1 Star	dards								th Targe		3)	
	, MA (2140	ALPHA	Quote #:	V. C.	100 14				No NP State /F				m	CP			(Criteria	. 6	W -	2/GW-3	
Phone: 617 8	*		Turn-A	Around Tir	ne					/ /	-	7	7.	7	7	/	7	7		7 7			
Email: jerikso	n @ mcphailge		Stand	dard □		confirmed if pre-ap	proved!)	ANAIN	Sisi	×44.2	P 14 DROP	VPH. Changes & Targets CPP13	C PCR Targets only	TPH: Co	/ /	'Porint	/ /		//		//		TO
	oject Informat o,As,Cd,Cr, C				'n Fa			8 ₹	4	PAH	DMCP 14	J. R.C.F.			JFing	8	2 1	STANTE		/ /	/	SAMPLE INFO	D A L
ivietai iist. Ot	3,A3,Ou,Oi, O	,u, 1 b, 110	J, INI, 1	3L,/\g,2	.11, 1 6			 	D 624	METALS: DMCD	METALS: DRCRAS	& Tare	A Tare	15	1 Ku	METAL	2	7 /	/ /	' /		☐ Field	#
								 	2 8260	J. ABN	J. R.C.	"ges	'ges	OPE	aut o	DIS. ME	100	wi/				Lab to do	B O T
						+				1 3	18	CRa	7 / Ra	00	7	0,00	3	בוח		/-/	/	☐ Lab to do	T
ALPHA Lab ID (Lab Use Only)	San	nple ID		Colle Date	ection Time	Sample Matrix	Sampler Initials	نې	SVOC	META	MET, EPH.	. / A	0 0	TP.	15	9	1	/ 9	4 /	/ /	Sam	ple Comments	E
759340	0W 5-	1		8/18	10 00	W	NDH								X	X	X	V			Odin	pie Gorillients	4
~ 12 17 110		8		07.0	10		MALL														-		1
						-			-	+	-					-							-
						-			_						\dashv	-		_	_	_			
		(0.6)																					
)3																				
	300																						
																	1	\Box					
															+		1	+	+				+
Container Type	Preservative					Conta	iner Type		+		+		\dashv			A	A	_		_			-
P= Plastic A= Amber glass V= Vial	A= None B= HCl						eservative	\vdash	+		+				C	P	P	A		+			
G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH		Relingu	ished By:			e/Time			Poss	ivod D				P	ate/1	_	1			1000		
C= Cube O= Other E= Encore	F= MeOH $G= NaHSO_4$ $H= Na_2S_2O_3$	J. ERIKSON	1.44	lum		8/18/	16 1400	Jash	S	Rece	ived B	y: Als	L F	2/10				32	All sa	amples	submi	itted are subject Conditions.	t to
D= BOD Bottle	I= Ascorbic Acid J = NH₄CI K= Zn Acetate	Johns	and	A CA	42 8/1	8/6/	808	1	In	~	X	7			8/18/	16	308		See	reverse	e side.		
Page 22 of 23	O= Other			Λ α .								-2	V-0015 - 001505						FORM	1 NO: 01-	01 (rev. 1	12-Mar-2012)	

ALPHA	CHA	AIN OF	cu	STO	DY	PAGE	_OF	Dat	te Rec	'd in La	ab: 8	11	81	16		A	LPH	A Jo	b#:	1/6	1259	34
8 Walkup Drive	320 Forbes Blvd	,	Project	Informat	ion			Re	port	Inform	ation	- Data	Deli	verab	les	В	illing	Info	rmat	ion		
Westboro, MA (Tel: 508-898-92	01581 Mansfield, MA (2048	Project N	Name: En	MANU	EL		A	ADEx		ΠE	MAIL				M	Same	as Cl	lient in	nfo PC) #:	
Client Information	on		Project L	ocation:	Boston	, ma			2022			-			ject	Infor				ement		
Client: McPHAIL	ASSOCIATES		Project #	^{#:} 5980	0.9.01			A) Y	∕es ☐ ∕es ໕	No MA No Mat	MCP A	malytic ce Req	cal Met uired c	hods on this	SDG	? (Re	Ye 🗆 equire	es 风 N ed for I	No C	T RCP A	Analytical Me cs)	ethods
Address: 2269			Project N	/lanager:	J. ERII	ISON		□ Y	es 💢	No GW No NPI	1 Stand	dards (
CAMBRIDGE		2140	ALPHA	Quote #:						State /Fe	ed Prog	gram _		mc	P			Criteri	a	GW-	2/gw-3	3
Phone: 617	868 1420		Turn-#	Around Tir	ne				,		A 4	73	1/2/	/*/						ΙΤ		
	on @ mcphailge roject Informat		MStand Date I		l RUSH (only	v confirmed if pre-a _l	oproved!)	ANAIVE	SVOC: DESA DES	METALS: DMCp 1	WETALS: DRCRAS DINCP 14 DRCF	VPH: Class & Targets C PP13	D PCB Der Targets D Ran	IPH: DQuant Only	J. DFingerprint	T SOLVED M.S	.S. Mantes				SAMPLE II Filtration Field Lab to do Preservatio Lab to do)
ALPHA Lab ID (Lab Use Only)	San	nple ID		2000000	ection	Sample Matrix		, vo	Noc	ETAL	ETAL PH.	HA	PCB	H. L	Total	25	5/3		/ /			
7 5024				Date 0/16	Time	W	Initials	/ - /		2 / -	- 4	/ 3	777			V				San	ple Comme	
47-17 110	0W 5-	ı		8/18	10	W	NDH			-	+				Y						nu ene	4
		70.0					-		-	-					-	+-					- 1117	
									_					-	-							
							-												_			
		100																				
			1																			
			-																			
Container Type P= Plastic	Preservative A= None		,			Conta	ainer Type							C	A	A	A					
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃					Pre	eservative							P	P	P	P				***	
B= Bacteria cup C= Cube O= Other	D= H ₂ SO ₄ E= NaOH F= MeOH			ished By:		Date	e/Time			Rece	ived By				Date	/Time)	A11 -		00 m de	itted a '	
E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ CI K= Zn Acetate	J. ERIKSON	Ja Ja	SP A	Az eli	8/18/	16 1400	n ²	Ly.	N.	R	49.	LB/	18/	8/16	16:	31	Alph See	na's Te rever	erms and se side.	itted are sul d Conditions 12-Mar-2012)	
Page 23 of 23	O= Other			1									Promotos -					· Oid		or (rev.	וביועומויבטוב)	

ANALYTICAL REPORT

Lab Number: L1622774

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: John Erikson Phone: (617) 868-1420

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Report Date: 08/01/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1622774-01	B-4 (OW)	WATER	BOSTON, MA	07/21/16 11:00	07/21/16

Project Name:5980 EMMANUELLab Number:L1622774Project Number:5980.9.00Report Date:08/01/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact	t Client Services	at 800-624-9220	with any questions.

Project Name:5980 EMMANUELLab Number:L1622774Project Number:5980.9.00Report Date:08/01/16

Case Narrative (continued)

Sample Receipt

The samples were received in inappropriate containers for the Microextractables analysis.

Semivolatile Organics

The WG916408-2/-3 LCS/LCSD recoveries, associated with L1622774-01, are below the acceptance criteria for benzidine (7%/0%) and pyridine (LCSD 7%); however, they have been identified as "difficult" analytes. The results of the associated sample are reported.

Metals

The WG916585-4 MS recovery for iron (419%), performed on L1622774-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/01/16

600, Skulow Kelly Stenstrom

ALPHA

ORGANICS

VOLATILES

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

SAMPLE RESULTS

Lab Number: L1622774

Report Date: 08/01/16

Lab ID: L1622774-01 B-4 (OW) Client ID: Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 1,8260C Analytical Date: 07/28/16 08:28

Analyst: MM Date Collected: 07/21/16 11:00 Date Received: 07/21/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	ND		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.5		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
1,2-Dichloroethene, Total	ND		ug/l	0.50		1	
Trichloroethene	ND		ug/l	0.50		1	

L1622774

08/01/16

Project Name: 5980 EMMANUEL

L1622774-01

B-4 (OW)

Project Number: 5980.9.00

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 07/21/16 11:00

Lab Number:

Report Date:

Date Received: 07/21/16

	0-4 (UVV)				Date Rec		07/21/10	
	BOSTON, MA				Field Pre	-	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by G	C/MS - Westborough	Lab						
1,2-Dichlorobenzene		ND		ug/l	2.5		1	
1,3-Dichlorobenzene		ND		ug/l	2.5		1	
1,4-Dichlorobenzene		ND		ug/l	2.5		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	5.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	5.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	5.0		1	
Acetone		5.2		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	5.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.5		1	
Tetrahydrofuran		ND		ug/l	5.0		1	
2,2-Dichloropropane		ND		ug/l	2.5		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.5		1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	2.5		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	2.5		1	
o-Chlorotoluene		ND		ug/l	2.5		1	
p-Chlorotoluene		ND		ug/l	2.5		1	
1,2-Dibromo-3-chloropropane		ND		ug/l	2.5		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
Isopropylbenzene		ND		ug/l	0.50		1	
p-Isopropyltoluene		ND		ug/l	0.50		1	
Naphthalene		ND		ug/l	2.5		1	
n-Propylbenzene		ND		ug/l	0.50		1	

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: Date Collected: 07/21/16 11:00

Client ID: B-4 (OW) Date Received: 07/21/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	85		70-130	
Toluene-d8	83		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	89		70-130	

Project Name: Lab Number: 5980 EMMANUEL L1622774

Project Number: Report Date: 5980.9.00 08/01/16

SAMPLE RESULTS

Lab ID: Date Collected: L1622774-01 07/21/16 11:00

Client ID Samp

Matri

Analytical Method: 1,8260C-SIM(M) Analytical Date: 07/28/16 08:28

ent ID:	B-4 (OW)	Date Received:	07/21/16
nple Location:	BOSTON, MA	Field Prep:	Not Specified
rix:	Water		
lytical Method:	1 8260C-SIM(M)		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - V	Westborough Lab					
1,4-Dioxane	ND		ug/l	3.0		1

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: L1622774-01
Client ID: B-4 (OW)

Sample Location: BOSTON, MA
Matrix: Water

Analytical Method: 14,504.1 Analytical Date: 07/24/16 12:19

Analyst: NS

Date Collected: 07/21/16 11:00
Date Received: 07/21/16
Field Prep: Not Specified
Extraction Method:EPA 8011
Extraction Date: 07/24/16 10:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1622774

Project Name: 5980 EMMANUEL Lab Number:

Project Number: 5980.9.00 **Report Date:** 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 8011

Analytical Date: 07/24/16 11:20 Extraction Date: 07/24/16 10:28

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbor	ough Lab fo	or sample(s)	: 01	Batch: WG9164	470-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 07/28/16 06:47

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Westborough	Lab for sa	ample(s):	01	Batch:	WG917924-3	
1,4-Dioxane	ND		ug/l		3.0		

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/16 06:47

	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01 Batch:	WG917925-3
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/16 06:47

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG917925-3
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/16 06:47

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01	Batch:	WG917925-3
Bromobenzene	ND	ug	ή	2.5	
n-Butylbenzene	ND	ug		0.50	
sec-Butylbenzene	ND	ug,		0.50	
tert-Butylbenzene	ND	ug,		2.5	
o-Chlorotoluene	ND	ug,		2.5	
p-Chlorotoluene	ND	ug		2.5	
1,2-Dibromo-3-chloropropane	ND	ug		2.5	
Hexachlorobutadiene	ND	ug		0.50	
Isopropylbenzene	ND	ug		0.50	
p-Isopropyltoluene	ND	ug		0.50	
Naphthalene	ND	ug		2.5	
n-Propylbenzene	ND	ug		0.50	
1,2,3-Trichlorobenzene	ND	ug		2.5	
1,2,4-Trichlorobenzene	ND	ug,		2.5	
1,3,5-Trimethylbenzene	ND	ug,		2.5	
1,3,5-Trichlorobenzene	ND	ug,		2.0	
1,2,4-Trimethylbenzene	ND	ug,		2.5	
trans-1,4-Dichloro-2-butene	ND	ug,		2.5	
Ethyl ether	ND	ug		2.5	
Methyl Acetate	ND	ug,	Ί	10	
Ethyl Acetate	ND	ug		10	
Isopropyl Ether	ND	ug		2.0	
Cyclohexane	ND	ug,		10	
Tert-Butyl Alcohol	ND	ug,		10	
Ethyl-Tert-Butyl-Ether	ND	ug		2.0	
Tertiary-Amyl Methyl Ether	ND	ug,		2.0	
1,1,2-Trichloro-1,2,2-Trifluoroetha	nne ND	ug,	Ί	10	
Methyl cyclohexane	ND	ug,		10	
p-Diethylbenzene	ND	ug,	Ί	2.0	
. ,					

L1622774

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00 Report Date: 08/01/16

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/16 06:47

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab	for sampl	e(s): 01	Batch:	WG917925-3	
4-Ethyltoluene	ND		ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0		

		AC	ceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	82		70-130
Toluene-d8	83		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	87		70-130

Project Name: 5980 EMMANUEL

Lab Number:

L1622774

Project Number: 5980.9.00

Report Date:

08/01/16

_	LCS		LCSD	_	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough Lab	Associated san	nple(s): 01	Batch: WG9164	470-2 WG	916470-3				
1,2-Dibromoethane	95		100		70-130	5		20	Α
1,2-Dibromo-3-chloropropane	93		95		70-130	2		20	А

Project Name: 5980 EMMANUEL

Lab Number:

L1622774

Project Number: 5980.9.00

Papart Data

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s):	01 Batch:	WG917924-1	WG917924-2			
1,4-Dioxane	88		84		70-130	5	25	

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch: WG91	17925-1	WG917925-2			
Methylene chloride	90		91		70-130	1		20
1,1-Dichloroethane	88		87		70-130	1		20
Chloroform	87		88		70-130	1		20
Carbon tetrachloride	87		84		63-132	4		20
1,2-Dichloropropane	91		89		70-130	2		20
Dibromochloromethane	88		82		63-130	7		20
1,1,2-Trichloroethane	85		85		70-130	0		20
2-Chloroethylvinyl ether	90		90		70-130	0		20
Tetrachloroethene	82		79		70-130	4		20
Chlorobenzene	87		86		75-130	1		25
Trichlorofluoromethane	96		93		62-150	3		20
1,2-Dichloroethane	88		88		70-130	0		20
1,1,1-Trichloroethane	87		87		67-130	0		20
Bromodichloromethane	90		87		67-130	3		20
trans-1,3-Dichloropropene	84		83		70-130	1		20
cis-1,3-Dichloropropene	90		88		70-130	2		20
1,1-Dichloropropene	86		85		70-130	1		20
Bromoform	80		79		54-136	1		20
1,1,2,2-Tetrachloroethane	101		100		67-130	1		20
Benzene	88		88		70-130	0		25
Toluene	83		82		70-130	1		25

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG9	17925-1	WG917925-2			
Ethylbenzene	88		88		70-130	0		20
Chloromethane	87		84		64-130	4		20
Bromomethane	102		103		39-139	1		20
Vinyl chloride	93		92		55-140	1		20
Chloroethane	73		72		55-138	1		20
1,1-Dichloroethene	86		86		61-145	0		25
trans-1,2-Dichloroethene	87		85		70-130	2		20
Trichloroethene	86		84		70-130	2		25
1,2-Dichlorobenzene	88		88		70-130	0		20
1,3-Dichlorobenzene	90		88		70-130	2		20
1,4-Dichlorobenzene	82		86		70-130	5		20
Methyl tert butyl ether	89		88		63-130	1		20
p/m-Xylene	80		80		70-130	0		20
o-Xylene	83		82		70-130	1		20
cis-1,2-Dichloroethene	88		86		70-130	2		20
Dibromomethane	84		83		70-130	1		20
1,4-Dichlorobutane	97		94		70-130	3		20
1,2,3-Trichloropropane	116		112		64-130	4		20
Styrene	84		83		70-130	1		20
Dichlorodifluoromethane	92		89		36-147	3		20
Acetone	97		90		58-148	7		20

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG9	17925-1	WG917925-2			
Carbon disulfide	96		94		51-130	2		20
2-Butanone	88		81		63-138	8		20
Vinyl acetate	88		88		70-130	0		20
4-Methyl-2-pentanone	90		94		59-130	4		20
2-Hexanone	88		87		57-130	1		20
Ethyl methacrylate	85		83		70-130	2		20
Acrylonitrile	88		91		70-130	3		20
Bromochloromethane	86		85		70-130	1		20
Tetrahydrofuran	88		87		58-130	1		20
2,2-Dichloropropane	89		86		63-133	3		20
1,2-Dibromoethane	87		83		70-130	5		20
1,3-Dichloropropane	86		86		70-130	0		20
1,1,1,2-Tetrachloroethane	92		91		64-130	1		20
Bromobenzene	95		93		70-130	2		20
n-Butylbenzene	78		79		53-136	1		20
sec-Butylbenzene	82		80		70-130	2		20
tert-Butylbenzene	80		78		70-130	3		20
o-Chlorotoluene	108		100		70-130	8		20
p-Chlorotoluene	88		86		70-130	2		20
1,2-Dibromo-3-chloropropane	92		90		41-144	2		20
Hexachlorobutadiene	86		82		63-130	5		20

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG9	17925-1 \	NG917925-2		
Isopropylbenzene	88		85		70-130	3	20
p-Isopropyltoluene	80		78		70-130	3	20
Naphthalene	82		90		70-130	9	20
n-Propylbenzene	91		88		69-130	3	20
1,2,3-Trichlorobenzene	81		86		70-130	6	20
1,2,4-Trichlorobenzene	81		87		70-130	7	20
1,3,5-Trimethylbenzene	82		84		64-130	2	20
1,3,5-Trichlorobenzene	81		86		70-130	6	20
1,2,4-Trimethylbenzene	80		85		70-130	6	20
trans-1,4-Dichloro-2-butene	104		94		70-130	10	20
Ethyl ether	87		88		59-134	1	20
Methyl Acetate	95		98		70-130	3	20
Ethyl Acetate	87		88		70-130	1	20
Isopropyl Ether	88		85		70-130	3	20
Cyclohexane	90		87		70-130	3	20
Tert-Butyl Alcohol	86		88		70-130	2	20
Ethyl-Tert-Butyl-Ether	89		88		70-130	1	20
Tertiary-Amyl Methyl Ether	87		85		66-130	2	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	92		92		70-130	0	20
Methyl cyclohexane	84		83		70-130	1	20
p-Diethylbenzene	78		81		70-130	4	20

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0°	1 Batch: WG9	917925-1	WG917925-2				
4-Ethyltoluene	86		86		70-130	0		20	
1,2,4,5-Tetramethylbenzene	97		98		70-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	85		86		70-130	
Toluene-d8	85		86		70-130	
4-Bromofluorobenzene	90		88		70-130	
Dibromofluoromethane	90		88		70-130	

SEMIVOLATILES

L1622774

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

SAMPLE RESULTS

Lab Number:

Report Date: 08/01/16

Lab ID: L1622774-01 B-4 (OW) Client ID: BOSTON, MA Sample Location:

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 07/31/16 03:37

Analyst: MW

Date Collected: 07/21/16 11:00 Date Received: 07/21/16 Field Prep: Not Specified Extraction Method: EPA 3510C Extraction Date: 07/23/16 18:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: Date Collected: 07/21/16 11:00

Client ID: B-4 (OW) Date Received: 07/21/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westboro	ugh Lab					
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	48		21-120	
Phenol-d6	37		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	85		15-120	
2,4,6-Tribromophenol	81		10-120	
4-Terphenyl-d14	97		41-149	

L1622774

Project Name: 5980 EMMANUEL Lab Number:

Project Number: Report Date: 5980.9.00 08/01/16

SAMPLE RESULTS

Date Collected: 07/21/16 11:00

Lab ID: L1622774-01 Client ID: B-4 (OW) Date Received: 07/21/16 Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM **Extraction Date:** 07/23/16 18:28 07/27/16 16:46

Analytical Date: K۷ Analyst:

MDL **Parameter** Result Qualifier Units RL **Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab 1 Acenaphthene ND ug/l 0.10 2-Chloronaphthalene ND 0.20 1 ug/l ND Fluoranthene 0.20 1 ug/l --Hexachlorobutadiene ND 0.50 1 ug/l --Naphthalene ND ug/l 0.20 1 ND 1 Benzo(a)anthracene 0.20 ug/l --Benzo(a)pyrene ND ug/l 0.20 1 Benzo(b)fluoranthene ND 0.20 1 ug/l ND Benzo(k)fluoranthene 0.20 1 ug/l --Chrysene ND 0.20 1 ug/l --1 Acenaphthylene ND ug/l 0.20 --ND 0.20 1 Anthracene ug/l ND 0.20 1 Benzo(ghi)perylene ug/l Fluorene ND ug/l 0.20 1 Phenanthrene ND 0.20 1 ug/l --Dibenzo(a,h)anthracene ND 0.20 1 ug/l Indeno(1,2,3-cd)pyrene ND 0.20 1 ug/l __ ND 0.20 1 Pyrene -ug/l 1-Methylnaphthalene ND 0.20 1 ug/l 2-Methylnaphthalene ND 0.20 1 ug/l --Pentachlorophenol ND ug/l 0.80 --1 Hexachlorobenzene ND ug/l 0.80 1 ND Hexachloroethane 0.80 1 ug/l --

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: Date Collected: 07/21/16 11:00

Client ID: B-4 (OW) Date Received: 07/21/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	97	10-120
4-Terphenyl-d14	96	41-149

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/27/16 01:55

Analyst: MW

Extraction Method: EPA 3510C Extraction Date: 07/23/16 18:26

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG916408-1	
Benzidine	ND		ug/l		20		
1,2,4-Trichlorobenzene	ND		ug/l		5.0		
Bis(2-chloroethyl)ether	ND		ug/l		2.0		
1,2-Dichlorobenzene	ND		ug/l		2.0		
1,3-Dichlorobenzene	ND		ug/l		2.0		
1,4-Dichlorobenzene	ND		ug/l		2.0		
3,3'-Dichlorobenzidine	ND		ug/l		5.0		
2,4-Dinitrotoluene	ND		ug/l		5.0		
2,6-Dinitrotoluene	ND		ug/l		5.0		
Azobenzene	ND		ug/l		2.0		
4-Chlorophenyl phenyl ether	ND		ug/l		2.0		
4-Bromophenyl phenyl ether	ND		ug/l		2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0		
Bis(2-chloroethoxy)methane	ND		ug/l		5.0		
Hexachlorocyclopentadiene	ND		ug/l		20		
Isophorone	ND		ug/l		5.0		
Nitrobenzene	ND		ug/l		2.0		
NDPA/DPA	ND		ug/l		2.0		
n-Nitrosodi-n-propylamine	ND		ug/l		5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Biphenyl	ND		ug/l		2.0		
Aniline	ND		ug/l		2.0		
4-Chloroaniline	ND		ug/l		5.0		
2-Nitroaniline	ND		ug/l		5.0		

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/27/16 01:55

Analyst: MW

Extraction Method: EPA 3510C Extraction Date: 07/23/16 18:26

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01	Batch:	WG916408-1	
3-Nitroaniline	ND		ug/l		5.0		
4-Nitroaniline	ND		ug/l		5.0		
Dibenzofuran	ND		ug/l		2.0		
n-Nitrosodimethylamine	ND		ug/l		2.0		
2,4,6-Trichlorophenol	ND		ug/l		5.0		
p-Chloro-m-cresol	ND		ug/l		2.0		
2-Chlorophenol	ND		ug/l		2.0		
2,4-Dichlorophenol	ND		ug/l		5.0		
2,4-Dimethylphenol	ND		ug/l		5.0		
2-Nitrophenol	ND		ug/l		10		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l		20		
4,6-Dinitro-o-cresol	ND		ug/l		10		
Phenol	ND		ug/l		5.0		
2-Methylphenol	ND		ug/l		5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0		
2,4,5-Trichlorophenol	ND		ug/l		5.0		
Benzoic Acid	ND		ug/l		50		
Benzyl Alcohol	ND		ug/l		2.0		
Carbazole	ND		ug/l		2.0		
Pyridine	ND		ug/l		5.0		

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Parameter

Lab Number:

L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 07/27/16 01:55

Analyst:

MW

Extraction Method: EPA 3510C

MDL

Extraction Date:

07/23/16 18:26

Result

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG916408-1

Qualifier

Units

RL

Acceptance Criteria Surrogate %Recovery Qualifier 2-Fluorophenol 53 21-120 Phenol-d6 40 10-120 Nitrobenzene-d5 95 23-120 2-Fluorobiphenyl 87 15-120 2,4,6-Tribromophenol 85 10-120 4-Terphenyl-d14 41-149 97

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/24/16 11:00

Analyst: KV

Extraction Method: EPA 3510C Extraction Date: 07/23/16 18:28

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG916409 Acenaphthene ND ug/l 0.10 2-Chloronaphthalene ND ug/l 0.20 Fluoranthene ND ug/l 0.20 Hexachlorobutadiene ND ug/l 0.50 Naphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)ffluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20	-1
2-Chloronaphthalene ND ug/l 0.20 Fluoranthene ND ug/l 0.20 Hexachlorobutadiene ND ug/l 0.50 Naphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Fluoranthene ND ug/l 0.20 Hexachlorobutadiene ND ug/l 0.50 Naphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Hexachlorobutadiene ND ug/l 0.50 Naphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Naphthalene ND ug/l 0.20 Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Benzo(a)anthracene ND ug/l 0.20 Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Benzo(a)pyrene ND ug/l 0.20 Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Benzo(b)fluoranthene ND ug/l 0.20 Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Benzo(k)fluoranthene ND ug/l 0.20 Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Chrysene ND ug/l 0.20 Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Acenaphthylene ND ug/l 0.20 Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Anthracene ND ug/l 0.20 Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Benzo(ghi)perylene ND ug/l 0.20 Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Fluorene ND ug/l 0.20 Phenanthrene ND ug/l 0.20	
Phenanthrene ND ug/l 0.20	
Dibenzo(a,h)anthracene ND ug/l 0.20	
Indeno(1,2,3-cd)pyrene ND ug/l 0.20	
Pyrene ND ug/l 0.20	
1-Methylnaphthalene ND ug/l 0.20	
2-Methylnaphthalene ND ug/l 0.20	
Pentachlorophenol ND ug/l 0.80	
Hexachlorobenzene ND ug/l 0.80	
Hexachloroethane ND ug/l 0.80	

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00 Lab Number:

L1622774

Report Date: 08/01/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 07/24/16 11:00

Analyst:

K۷

Extraction Method: EPA 3510C

07/23/16 18:28 **Extraction Date:**

Result Qualifier Units RLMDL **Parameter** Batch: WG916409-1 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	41		21-120	
Phenol-d6	30		10-120	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	84		15-120	
2,4,6-Tribromophenol	87		10-120	
4-Terphenyl-d14	75		41-149	

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	ated sample(s):	01 Batch:	WG916408-2	2 WG916408-3		
Benzidine	7	Q	0	Q	10-75	NC	30
1,2,4-Trichlorobenzene	62		70		39-98	12	30
Bis(2-chloroethyl)ether	68		78		40-140	14	30
1,2-Dichlorobenzene	56		64		40-140	13	30
1,3-Dichlorobenzene	52		61		40-140	16	30
1,4-Dichlorobenzene	52		62		36-97	18	30
3,3'-Dichlorobenzidine	102		84		40-140	19	30
2,4-Dinitrotoluene	118	Q	119	Q	24-96	1	30
2,6-Dinitrotoluene	108		106		40-140	2	30
Azobenzene	94		91		40-140	3	30
4-Chlorophenyl phenyl ether	91		88		40-140	3	30
4-Bromophenyl phenyl ether	96		91		40-140	5	30
Bis(2-chloroisopropyl)ether	70		81		40-140	15	30
Bis(2-chloroethoxy)methane	81		85		40-140	5	30
Hexachlorocyclopentadiene	51		58		40-140	13	30
Isophorone	85		88		40-140	3	30
Nitrobenzene	78		90		40-140	14	30
NDPA/DPA	95		90		40-140	5	30
n-Nitrosodi-n-propylamine	81		86		29-132	6	30
Bis(2-ethylhexyl)phthalate	107		97		40-140	10	30
Butyl benzyl phthalate	109		99		40-140	10	30

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	iated sample(s):	01 Batch:	WG916408-2	2 WG916408-3				
Di-n-butylphthalate	106		98		40-140	8		30	
Di-n-octylphthalate	104		96		40-140	8		30	
Diethyl phthalate	100		94		40-140	6		30	
Dimethyl phthalate	100		95		40-140	5		30	
Biphenyl	82		83		40-140	1		30	
Aniline	31	Q	22	Q	40-140	34	Q	30	
4-Chloroaniline	64		62		40-140	3		30	
2-Nitroaniline	102		105		52-143	3		30	
3-Nitroaniline	91		86		25-145	6		30	
4-Nitroaniline	98		94		51-143	4		30	
Dibenzofuran	86		84		40-140	2		30	
1,2,4,5-Tetrachlorobenzene	74		77		2-134	4		30	
Acetophenone	83		91		39-129	9		30	
n-Nitrosodimethylamine	40		49		22-74	20		30	
2,4,6-Trichlorophenol	102		101		30-130	1		30	
p-Chloro-m-cresol	95		92		23-97	3		30	
2-Chlorophenol	70		80		27-123	13		30	
2,4-Dichlorophenol	88		92		30-130	4		30	
2,4-Dimethylphenol	75		66		30-130	13		30	
2-Nitrophenol	87		102		30-130	16		30	
4-Nitrophenol	68		70		10-80	3		30	

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
semivolatile Organics by GC/MS - Westb	orough Lab Associ	iated sample(s):	01 Batch:	WG916408-2	2 WG916408-3				
2,4-Dinitrophenol	125		129		20-130	3		30	
4,6-Dinitro-o-cresol	125		125		20-164	0		30	
Phenol	37		40		12-110	8		30	
2-Methylphenol	66		71		30-130	7		30	
3-Methylphenol/4-Methylphenol	69		72		30-130	4		30	
2,4,5-Trichlorophenol	100		99		30-130	1		30	
Benzoic Acid	53		55		10-164	4		30	
Benzyl Alcohol	71		77		26-116	8		30	
Carbazole	97		90		55-144	7		30	
Pyridine	14		7	Q	10-66	67	Q	30	
Parathion, ethyl	155	Q	151	Q	40-140	3		30	
Atrazine	127		117		40-140	8		30	
Benzaldehyde	65		73		40-140	12		30	
Caprolactam	33		32		10-130	3		30	
2,3,4,6-Tetrachlorophenol	104		100		40-140	4		30	

Project Name: 5980 EMMANUEL

Lab Number:

L1622774

Project Number: 5980.9.00

Report Date:

08/01/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG916408-2 WG916408-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery	Qual Criteria
2-Fluorophenol	45	54	21-120
Phenol-d6	38	42	10-120
Nitrobenzene-d5	85	99	23-120
2-Fluorobiphenyl	86	88	15-120
2,4,6-Tribromophenol	101	97	10-120
4-Terphenyl-d14	104	95	41-149
4-Terphenyl-d14	104	95	41-149

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	ssociated sample(s): 01 Batcl	n: WG916409-2 WG91640	9-3	
Acenaphthene	84	86	37-111	2	40
2-Chloronaphthalene	89	92	40-140	3	40
Fluoranthene	97	101	40-140	4	40
Hexachlorobutadiene	102	105	40-140	3	40
Naphthalene	73	76	40-140	4	40
Benzo(a)anthracene	97	102	40-140	5	40
Benzo(a)pyrene	98	103	40-140	5	40
Benzo(b)fluoranthene	106	110	40-140	4	40
Benzo(k)fluoranthene	95	98	40-140	3	40
Chrysene	90	95	40-140	5	40
Acenaphthylene	92	95	40-140	3	40
Anthracene	84	88	40-140	5	40
Benzo(ghi)perylene	102	107	40-140	5	40
Fluorene	90	92	40-140	2	40
Phenanthrene	84	88	40-140	5	40
Dibenzo(a,h)anthracene	104	109	40-140	5	40
Indeno(1,2,3-cd)pyrene	105	110	40-140	5	40
Pyrene	88	92	26-127	4	40
1-Methylnaphthalene	83	86	40-140	4	40
2-Methylnaphthalene	85	88	40-140	3	40
Pentachlorophenol	103	107	Q 9-103	4	40

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated samp	ole(s): 01 Batcl	n: WG916	6409-2 WG916409	-3		
Hexachlorobenzene	98		102		40-140	4		40
Hexachloroethane	68		71		40-140	4		40

Surrogate	LCS %Recovery	LCSD Qual %Recovery (Acceptance Qual Criteria
2-Fluorophenol	45	48	21-120
Phenol-d6	34	37	10-120
Nitrobenzene-d5	95	100	23-120
2-Fluorobiphenyl	92	95	15-120
2,4,6-Tribromophenol	99	103	10-120
4-Terphenyl-d14	84	87	41-149

PCBS

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: L1622774-01
Client ID: B-4 (OW)
Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 5,608

Analytical Date: 07/28/16 23:44

Analyst: JW

Date Collected: 07/21/16 11:00
Date Received: 07/21/16
Field Prep: Not Specified
Extraction Method: EPA 608
Extraction Date: 07/24/16 11:39

Cleanup Method: EPA 3665A Cleanup Date: 07/25/16 Cleanup Method: EPA 3660B Cleanup Date: 07/25/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А
Decachlorobiphenyl	66		30-150	Α

L1622774

Lab Number:

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00 **Report Date:** 08/01/16

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 5,608

Extraction Method: EPA 608 Analytical Date: 07/29/16 00:28

Analyst: JW

Extraction Date: 07/24/16 11:39 Cleanup Method: EPA 3665A Cleanup Date: 07/25/16 Cleanup Method: EPA 3660B Cleanup Date: 07/25/16

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for sample(s):	01 Batch:	WG916480-1	
Aroclor 1016	ND	ug/l	0.250		Α
Aroclor 1221	ND	ug/l	0.250		А
Aroclor 1232	ND	ug/l	0.250		А
Aroclor 1242	ND	ug/l	0.250		А
Aroclor 1248	ND	ug/l	0.250		А
Aroclor 1254	ND	ug/l	0.250		А
Aroclor 1260	ND	ug/l	0.200		А

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	61		30-150	А			
Decachlorobiphenyl	64		30-150	Α			

Matrix Spike Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	/ Qual	Recovery Limits	RPD	Qual	RPD I imits	Column
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,			-7					
Polychlorinated Biphenyls by	GC - Westbor	ough Lab	Associated sar	npie(s): 01 (QC Batch II	D: WG916	480-3 QC S	sample:	L1622466-01	Clien	it ID: MS	Sample	ļ
Aroclor 1016	ND	1	0.903	90		-	-		40-140	-		50	Α
Aroclor 1260	ND	1	0.911	91		-	-		40-140	-		50	Α

	MS	3	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66				30-150	Α
Decachlorobiphenyl	77				30-150	Α

Project Name: 5980 EMMANUEL

Lab Number:

L1622774

Project Number: 5980.9.00

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbe	orough Lab Associa	ated sample(s):	01 Batch:	WG916480-2					
Aroclor 1016	91		-		40-140	-		50	Α
Aroclor 1260	94		-		40-140	-		50	А

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60				30-150	Α
Decachlorobiphenyl	86				30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab	Associated sample(s): 0	1 QC Batch ID: \	WG916480-4	QC Sample:	L1622774-01	Client ID:	B-4 (OW)
Aroclor 1016	ND	ND	ug/l	NC		50	Α
Aroclor 1221	ND	ND	ug/l	NC		50	Α
Aroclor 1232	ND	ND	ug/l	NC		50	Α
Aroclor 1242	ND	ND	ug/l	NC		50	Α
Aroclor 1248	ND	ND	ug/l	NC		50	Α
Aroclor 1254	ND	ND	ug/l	NC		50	Α
Aroclor 1260	ND	ND	ug/l	NC		50	Α

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66		77		30-150	Α
Decachlorobiphenyl	66		81		30-150	Α

METALS

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00 **Report Date:**

L1622774 08/01/16

SAMPLE RESULTS

Date Collected:

Lab Number:

07/21/16 11:00

Client ID: B-4 (OW)

Sample Location:

BOSTON, MA

L1622774-01

Matrix:

Lab ID:

Water

Date Received: Field Prep:

07/21/16

Not Specified

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Qualifier RL MDL **Parameter** Result **Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/l 0.0020 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A AM 0.0044 0.0005 1 1,6020A Arsenic, Total mg/l 07/25/16 09:20 07/26/16 14:40 EPA 3005A AM

1 Cadmium, Total ND 0.0002 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A mg/l AMChromium, Total 0.0111 mg/l 0.0010 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A AM0.0278 0.0010 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A Copper, Total mg/l AM Iron, Total 8.51 0.050 1 07/25/16 09:20 07/27/16 04:08 EPA 3005A 19,200.7 MC mg/l Lead, Total 0.0175 mg/l 0.0005 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A AMMercury, Total ND mg/l 0.00020 1 07/25/16 14:48 07/26/16 18:53 EPA 245.1 3,245.1 EΑ 1 0.0088 1,6020A Nickel, Total mg/l 0.0020 07/25/16 09:20 07/26/16 14:40 EPA 3005A AM Selenium, Total ND 0.005 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A AM mg/l Silver, Total ND 0.0004 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A 1,6020A mg/l --AM 1,6020A Zinc, Total 0.0489 mg/l 0.0100 1 07/25/16 09:20 07/26/16 14:40 EPA 3005A AM

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01 Batch	n: WG9	16585-1					
Iron, Total	ND	mg/l	0.050		1	07/25/16 09:20	07/27/16 03:35	19,200.7	MC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG91	16765-1					
Mercury, Total	ND	mg/l	0.0002		1	07/25/16 14:48	07/26/16 18:48	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Batc	h: WG9′	16953-1					
Antimony, Total	ND	mg/l	0.0020		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Arsenic, Total	ND	mg/l	0.0005		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Cadmium, Total	ND	mg/l	0.0002		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Chromium, Total	ND	mg/l	0.0010		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Copper, Total	ND	mg/l	0.0010		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Lead, Total	ND	mg/l	0.0005		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Nickel, Total	ND	mg/l	0.0020		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Silver, Total	ND	mg/l	0.0004		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	07/25/16 09:20	07/26/16 14:31	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG916585-2						
Iron, Total	97		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG916765-2						
Mercury, Total	97		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG916953-2	!					
Antimony, Total	94		-		80-120	-		
Arsenic, Total	105		-		80-120	-		
Cadmium, Total	107		-		80-120	-		
Chromium, Total	104				80-120	-		
Copper, Total	99		-		80-120	-		
Lead, Total	106		-		80-120	-		
Nickel, Total	100		-		80-120	-		
Selenium, Total	102		-		80-120	-		
Silver, Total	101		-		80-120	-		
Zinc, Total	99		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number: L1622774

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy nits RP	D Qual	RPD Limits
Total Metals - Mansfield La	ab Associated sam	nple(s): 01	QC Batch	ID: WG916585	-4 Q(C Sample:	L1622774-01	Client ID: I	3-4 (OW)		
Iron, Total	8.51	1	12.7	419	Q	-	-	75	-125 -		20
Total Metals - Mansfield La	ab Associated sam	nple(s): 01	QC Batch	ID: WG916765	-4 Q(C Sample:	L1622774-01	Client ID: I	B-4 (OW)		
Mercury, Total	ND	0.005	0.0046	93		-	-	70	-130 -		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch	ID: WG916953	-4 Q(C Sample:	L1622774-01	Client ID: I	B-4 (OW)		
Antimony, Total	ND	0.5	0.4125	82		-	-	75	-125 -		20
Arsenic, Total	0.0044	0.12	0.1224	98		-	-	75	-125 -		20
Cadmium, Total	ND	0.051	0.0509	100		-	-	75	-125 -		20
Chromium, Total	0.0111	0.2	0.2004	95		-	-	75	-125 -		20
Copper, Total	0.0278	0.25	0.2780	100		-	-	75	-125 -		20
Lead, Total	0.0175	0.51	0.5143	97		-	-	75	-125 -		20
Nickel, Total	0.0088	0.5	0.4679	92		-	-	75	-125 -		20
Selenium, Total	ND	0.12	0.114	95		-	-	75	-125 -		20
Silver, Total	ND	0.05	0.0449	90		-	-	75	-125 -		20
Zinc, Total	0.0489	0.5	0.5291	96		-	-	75	-125 -		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00 Lab Number: L1622774

08/01/16 Report Date:

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG916585-3	QC Sample: L162	22774-01	Client ID: B-4	(OW)	
Iron, Total	8.51	8.75	mg/l	3		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG916765-3	QC Sample: L162	22774-01	Client ID: B-4	(OW)	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG916953-3	QC Sample: L162	22774-01	Client ID: B-4	(OW)	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.0044	0.0048	mg/l	8		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.0111	0.0115	mg/l	4		20
Copper, Total	0.0278	0.0276	mg/l	1		20
Lead, Total	0.0175	0.0171	mg/l	2		20
Nickel, Total	0.0088	0.0090	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0489	0.0494	mg/l	1		20

INORGANICS & MISCELLANEOUS

L1622774

Project Name: 5980 EMMANUEL

980 EMMANUEL Lab Number:

Project Number: 5980.9.00 **Report Date:** 08/01/16

SAMPLE RESULTS

Lab ID: L1622774-01

Client ID: B-4 (OW)
Sample Location: BOSTON, MA

Matrix: Water

Date Collected: 07/21/16 11:00

Date Received: 07/21/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total Suspended	130		mg/l	10	NA	2	-	07/24/16 15:50	121,2540D	SG
Cyanide, Total	ND		mg/l	0.005		1	07/22/16 15:30	07/25/16 13:03	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/22/16 01:08	121,4500CL-D	AS
pH (H)	6.3		SU	-	NA	1	-	07/22/16 02:50	121,4500H+-B	VM
Phenolics, Total	0.091		mg/l	0.030		1	07/22/16 11:15	07/22/16 14:26	4,420.1	TE
Chromium, Hexavalent	ND		mg/l	0.010		1	07/22/16 01:55	07/22/16 02:17	121,3500CR-B	VM
Anions by Ion Chromato	graphy - Westl	borough	Lab							
Chloride	670.		mg/l	25.0		50	-	07/26/16 07:53	44,300.0	AU

Lab Number:

Project Name: 5980 EMMANUEL

L1622774 **Project Number:** 5980.9.00 **Report Date:** 08/01/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab fo	r sample(s): 01	Batch:	WG9	15964-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	07/22/16 01:55	07/22/16 02:16	121,3500CR-B	s VM
General Chemistry -	Westborough Lab fo	r sample(s): 01	Batch:	WG9	15965-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	07/22/16 01:08	121,4500CL-D	AS
General Chemistry -	Westborough Lab fo	r sample(s): 01	Batch:	WG9	16116-1				
Phenolics, Total	ND	mg/l	0.030		1	07/22/16 11:15	07/22/16 14:20	4,420.1	TE
General Chemistry -	Westborough Lab fo	r sample(s): 01	Batch:	WG9	16219-1				
Cyanide, Total	ND	mg/l	0.005		1	07/22/16 15:30	07/25/16 12:48	121,4500CN-C	E JO
General Chemistry -	Westborough Lab fo	r sample(s): 01	Batch:	WG9	16471-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	07/24/16 15:50	121,2540D	SG
Anions by Ion Chrom	atography - Westbore	ough Lab for sar	nple(s):	01 E	atch: WG9	17224-1			
Chloride	ND	mg/l	0.500		1	-	07/25/16 18:41	44,300.0	AU

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Report Date:

08/01/16

Parameter	LCS %Recovery 0		SD covery Q	%Reco ual Limi		Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG	915964-2					
Chromium, Hexavalent	98		-	85-11	5 -		20	
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG	915965-2					
Chlorine, Total Residual	101		-	90-11	0 -			
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG	915966-1					
рН	100		-	99-10	1 -		5	
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG	916116-2					
Phenolics, Total	106		-	70-13	0 -			
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG	916219-2					
Cyanide, Total	102		-	90-11	0 -			
Anions by Ion Chromatography - Westbo	orough Lab Associated	sample(s): 01	Batch: WG	917224-2				
Chloride	99		-	90-11	0 -			

Matrix Spike Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Lab Number:

L1622774

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: '	WG91596	64-4 C	QC Sample: L162	22774-0	1 Client ID): B-4 (OW)	
Chromium, Hexavalent	ND	0.1	0.090	90		-	-		85-115	-	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG91611	6-4	QC Sample: L160	00007-7	2 Client ID	: MS Sample	
Phenolics, Total	ND	0.4	0.44	111		-	-		70-130	-	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG91621	9-4	QC Sample: L162	22698-0	2 Client ID	: MS Sample)
Cyanide, Total	ND	0.2	0.205	102		-	-		90-110	-	30
Anions by Ion Chromatograph	y - Westboroug	jh Lab Asso	ciated san	nple(s): 01 Q	C Batch II	D: WG9	17224-3 QC S	Sample:	L1622456-0	1 Client ID:	MS Sam
Chloride	18.0	4	21.4	85		-	-		40-151	-	18

L1622774

Lab Duplicate Analysis Batch Quality Control

Project Name: 5980 EMMANUEL

Project Number: 5980.9.00

Report Date: 08/01/16

Lab Number:

Parameter	Nativ	ve Sample	Duplicate Sar	mple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG915964-3	QC Sample: L16227	774-01 Client	ID: B-4 (OW)
Chromium, Hexavalent		ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG915965-3	QC Sample: L16227	774-01 Client	ID: B-4 (OW)
Chlorine, Total Residual		ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG915966-2	QC Sample: L16227	749-01 Client	ID: DUP Sample
рН		6.0	6.0	SU	0	5
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG916116-3	QC Sample: L16000	007-72 Client	ID: DUP Sample
Phenolics, Total		ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG916219-3	QC Sample: L16226	698-01 Client	ID: DUP Sample
Cyanide, Total		ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG916471-2	QC Sample: L16228	378-01 Client	ID: DUP Sample
Solids, Total Suspended		760	760	mg/l	0	29
Anions by Ion Chromatography - Westbo	orough Lab Associated	sample(s): 01 Q	C Batch ID: Wo	G917224-4 QC Sam	nple: L16224	56-01 Client ID: DUP
Chloride		18.0	18.0	mg/l	0	18

Project Name: 5980 EMMANUEL

Lab Number: L1622774 **Report Date:** 08/01/16 Project Number: 5980.9.00

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1622774-01A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	8260-SIM(14),8260(14)
L1622774-01B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	8260-SIM(14),8260(14)
L1622774-01C	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	504(14)
L1622774-01C1	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	504(14)
L1622774-01F	Plastic 500ml HNO3 preserved	A	<2	3.3	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)
L1622774-01G	Plastic 250ml NaOH preserved	Α	>12	3.3	Υ	Absent	TCN-4500(14)
L1622774-01H	Plastic 950ml unpreserved	Α	7	3.3	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1),PH- 4500(.01)
L1622774-01I	Plastic 950ml unpreserved	Α	7	3.3	Υ	Absent	TSS-2540(7)
L1622774-01J	Amber 1000ml H2SO4 preserved	Α	<2	3.3	Υ	Absent	TPHENOL-420(28)
L1622774-01J1	Amber 1000ml H2SO4 preserved	Α	<2	3.3	Υ	Absent	TPHENOL-420(28)
L1622774-01K	Amber 1000ml unpreserved	Α	7	3.3	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1622774-01L	Amber 1000ml unpreserved	Α	7	3.3	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1622774-01M	Amber 1000ml Na2S2O3	Α	7	3.3	Υ	Absent	PCB-608(7)
L1622774-01M1	Amber 1000ml Na2S2O3	Α	7	3.3	Υ	Absent	PCB-608(7)
L1622774-01N	Amber 1000ml Na2S2O3	Α	7	3.3	Υ	Absent	PCB-608(7)
L1622774-01N1	Amber 1000ml Na2S2O3	Α	7	3.3	Υ	Absent	PCB-608(7)
L1622774-01R	Plastic 500ml unpreserved	Α	7	3.3	Υ	Absent	HEXCR-3500(1)
L1622774-01S	Plastic 250ml unpreserved	Α	7	3.3	Υ	Absent	PH-4500(.01)
L1622774-01T	Plastic 500ml unpreserved	Α	7	3.3	Υ	Absent	TRC-4500(1)

Project Name: 5980 EMMANUEL Lab Number: L1622774

Project Number: 5980.9.00 **Report Date:** 08/01/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:5980 EMMANUELLab Number:L1622774Project Number:5980.9.00Report Date:08/01/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 5980 EMMANUEL
 Lab Number:
 L1622774

 Project Number:
 5980.9.00
 Report Date:
 08/01/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 6

ID No.:17873

Page 1 of 1

Published Date: 2/3/2016 10:23:10 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHA	IN OF C	USTO	YC	PAGE/	OF	Date I	Rec'd in	Lab:	7/2	ell	6		ALPH	IA Job#	:116	2377	y		
ALTICAL	000 5	Pro	ject Informat	ion			Repo	ort Info	rmati	on - Da	ta Del	iverab	les	Billin	g Informa	ation				
8 Walkup Drive Westboro, MA 01: Tel: 508-898-922		2048 Proje	Project Name: 5980 EMMUEC					MADEX □ EMAIL MSa								ne as Client info PO #:				
Client Information		Proje	Project Location: BOSTON, MIR						Regulatory Requirements & Project Information Requirements											
Client: McPHAIL	Proje	Project #: 5980.9.00						Yes ☐ No MA MCP Analytical Methods ☐ Yes ☒ No CT RCP Analytical Methods ☐ Yes ☒ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)												
Address: 2269	e Proje	Project Manager: J. ERIKSOW						☐ Yes 🔼 No GW1 Standards (Info Required for Metals & EPH with Targets)												
CAMBRIDGE, MA 02140			ALPHA Quote #:						☐ Yes 爲 No NPDES RGP ☐ Other State /Fed Program Criteria											
	368 1420	No. of Concession, Name of	rn-Around Tir																	
Email: jerik	son@mcphai	geo.com	Standard RUSH (only confirmed if pre-approved!)						ANALYSIS SVOC: CI8266 CI 624 CI524.2 METALS: CIMCP 14 CIRCLAS WETALS: CIMCP 14 CIRCLAS WETALS: CIMCP 14 CIRCLAS WETALS: CIMCP 14 CIRCLAS WHETALS: CIMCP 14 CIRCLAS WHETALS: CIMCP 14 CIRCLAS WHETALS: CIMCP 14 CIRCLAS WHETALS: CIMCP 14 CIRCLAS WHITTINGS CINCLAS WHETALS: CIMCP 14 CIRCLAS WHETALS: CIMCP 14 CIR											
			Standard						ANALYSIS SVOC: BESSO											
Additional Pro	oject Informati	on:	Date Due:						D MC	7.RC.		7//	Finge				SAMPLE INFO	TA		
							4/2	624 D PAH	13	45 L	Targe	1 /3	7 4	/ /	CHEOM	/ /	Filtration ☐ Field	#		
							D 8260	D ABN	MC	Ses &	Ses &	PES Int On	[mi			/	☐ Lab to do	B 0		
									3 3	O'Ran	J.Ran	J O O	PEI	20	*	1	Preservation ☐ Lab to do	T		
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Colle	ection Time	Sample Matrix	Sampler Initials	\si\	SVOC.	METALS: CINCP 13	EPH.	2 0	Hal	2 2	PHENOL		Sam	nple Comments	T T L E S		
227740	B-4(ow)	7/21	1100		NDH								XX		Juli	ipie comments	19		
	<u> </u>		4 / 64	0.8									YY	V				8 *		
														-						
				2000																
														-						
						-								-						
										-										
		egewan ese																		
		ii																		
Container Type P= Plastic	Preservative A= None B= HCI				Conta	ainer Type								P						
A= Amber glass V= Vial G= Glass		Preservative											AV A							
B= Bacteria cup C= Cube O= Other	D= H₂SO₄ E= NaOH F= MeOH G= NaHSO₄	2 · ENLIVER	inquished By:	0	Date	e/Time	1.0.	Re	eceive	•		11	Date/T	ime	All same	oles subm	nitted are subjec	t to		
E= Encore D= BOD Bottle		A1 1	21/16	300	010		5	PAR	17	2 11	61	8:20	Alpha's	Terms an	d Conditions.					
Page 64 of 65	J = NH₄CI K= Zn Acetate O= Other	John Sch	School PAL 1/21/16 18:20					Tielle												

Διρ _H A	CHA	IN OF	CU	STO	DY	PAGE/	OF	Date	Rec'	d in Lab	: 71	211	16	e di	1	ALPH	IA Job	#: L	16237	74		
A ALTICAL RESIDENCE		Project Information					Report Information - Data Deliverables							s	Billing Information							
8 Walkup Drive Westboro, MA 01 Tel: 508-898-922		2048	Project N	lame: 5	980 E	maui	IFC	KQ A	ADEx		□ ЕМ	AIL			X	Same	e as Clie	nt info	PO #:			
Client Information			Project Name: 5980 EMMUEC Project Location: BOSTON, MA						Regulatory Requirements & Project Information Requirements													
Client: Mc Punu	Project #: 5980.9.00							X Yes □ No MA MCP Analytical Methods □ Yes ☒ No CT RCP Analytical Methods □ Yes ☒ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)														
Client: MCHAIL ASSOCIATES Address: 2269 MASS AVE				Project Manager: J. ERIKSOW						☐ Yes ▲No GW1 Standards (Info Required for Metals & EPH with Targets)												
CAMBRIDGE, MA 02140				ALPHA Quote #:							☐ Yes 爲No NPDES RGP☐ Other State /Fed Program Criteria											
Phone: 617 868 1420				Turn-Around Time																		
Email: jerikson@mcphailgeo.com											CIRCP 15	CPP1	les Only		/ /		//	//				
	oject Informati	•	Date Due:						ALXS D SS4.2 CRAS CRAS CRAS CRAS CRAS CRAS CRAS CRAS										NFO T			
										D PAH	RAS DI	& Targets	'argets	Infy DE	IT AM		CHEON		Filtration ☐ Field ☐ Lab to do	#		
									DAB.	METALS: DINCP 13	S: DRC	Ranges		Suamt C	EEM	MENOL	25	//	Preservation	on B		
ALPHA Lab ID (Lab Use Only)	San	ple ID	Collection Sample Sampler Date Time Matrix Initials					, KO	SVOC.	METAL	EPH:	VPH:	TPH.	RSP	Ho	THE THE			Sample Comme	L E		
227.74.0	B-4(OW)		7/21	1100	W	NDH							X	\Diamond	$\langle X \rangle$				19		
																			2			

		0.00			223411										+	1						
												-			-	+						
			-												_				-			
						-			_	į.												
									_			\perp										
		11			1																	
Container Type	Preservative A= None					Conta	iner Type								1	P						
A= Amber glass V= Vial G= Glass	Preservative												4	AV B								
B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH		Relinqu	ished By:	A	Date	e/Time		Received By: Date/							Time All samples submitted are subject to						
O= Other E= Encore D= BOD Bottle	G= NaHSO₄ H = Na₂S₂O₃ I= Ascorbic Âcid	John 5	ren	M	11 2/	7121	300	doll	<u></u>	L	80	HAL	7/2	116	عاد	:30	Alpha	's Term	s and Conditions			
Page 65 of 65	K= Zn Acetate								1/2/16							/ 8 : 20 See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)						