wildfire

Let’s Talk About Wildfire Smoke and Health

By: Alison Davis

With more than 20 wildfires currently burning in the western U.S., this is a good time to learn more about wildfire smoke and health – and what you can do to protect yourself.

People with heart or lung disease, older adults, pregnant women and children are at greater risk from wildfire smoke – but even healthy people can be affected. Join our live Twitter chat at 1:30 p.m. EDT Monday, Aug. 22, to learn more about steps you can take to reduce your smoke exposure. Follow @EPAair and the #WildfireSmoke hashtag to join the conversation.

EPA research cardiologist Dr. Wayne Cascio and health effects scientist Susan Stone will be joined by experts from the U.S. Forest Service and the Centers for Disease Control to discuss:

  • What we know about wildfire smoke and health
  • How to find out if wildfire smoke is affecting air quality where you live
  • What steps you can take, before and during a fire, to protect your health

Post questions now in the comment section below, or tweet them when you join us for the chat on Aug. 22. We’ll answer as many question as we can during the chat.

About the author: Alison Davis is a Senior Advisor for Public Affairs in EPA’s Office of Air Quality Planning & Standards.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Tool Saves Millions of Dollars After Wildfire

By Marguerite Huber

Wildfire conflagration on forested hillsides

Wildfire seasons are getting longer and burning more acres. Photo by USDA Forest Service.

Fueled by drought, disease, and suburban sprawl, wildfire seasons are getting longer and burning more acres of land. Last August, the Elk Complex wildfire burned more than 130,000 acres east of Boise, Idaho. Nearly 75% of the burned area had high to moderate burn severity, threatening the ecosystem and the region’s water. Substantial fires have already flared up this summer around San Diego, California, and Flagstaff, Arizona.

Once a fire is about 80% contained, scientists and other experts from the Department of the Interior’s National Interagency Burn Area Emergency Response (BAER) team can go into the region and help develop emergency stabilization plans. They are aided by a resource—the Automated Geospatial Watershed Assessment (AGWA) tool—developed by researchers from EPA, the Agricultural Research Service (part of the U.S. Department of Agriculture), and the University of Arizona.

Originally developed as a computer model for use managing and analyzing water quantity and quality, fire recovery teams are now tapping it to identify potential threats to people, wildlife, and the land from post-fire flooding and erosion.

Watershed managers use AGWA to identify and assess downstream impacts and risks from increased flooding and erosion resulting from fire-related changes to habitats and soils. The tool can also be used to target restoration efforts, such as where to apply mulch and seed with native plant stock, to reduce such downstream risks.

“AGWA is a good example of a science product developed between two leading federal research agencies with mutual interest,” said EPA research ecologist William Kepner. “The tool provides a practical application with immediate benefits.”

For the Elk Complex wildfire, the BAER team estimates it saved approximately $7,000,000 to $8,000,000 by using AGWA to target 2,000 acres for treatment instead of the initial 16,000 acres identified through more traditional methods.

“AGWA is able to help the team develop a stabilization plan where post-wildfire impacts pose immediate and significant threats to people and property,” Kepner adds.

Additionally, the emergency response team has successfully used the tool for post-fire watershed assessments following fires in Arizona, New Mexico, California, Idaho, and Washington. More than 8,000 users, spanning six continents, 163 countries, and 4,903 cities, have registered to use the Automated Geospatial Watershed Assessment tool .

The AGWA tool has been included as an ecosystem services analysis tool in the new EPA EnviroAtlas, and can be downloaded here. It provides an important resource for meeting the challenge of longer, more destructive wildfire seasons.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

EPA Study Shows Poverty Is a Risk Factor for Heart Disease

Every day EPA researchers are advancing our understanding of how air pollution threatens heart health. We will be sharing some of the important studies under way and research discoveries during February in recognition of American Heart Month.

Healthy Heart graphic identifier

By Ann Brown

In 2008, lightening started a peat bog wildfire in eastern North Carolina. Dry peat is an organic material that makes a perfect fuel for fire. For weeks the fire smoldered, blanketing communities in 44 rural counties with toxic air pollutants that exceeded EPA’s National Ambient Air Quality Standards at times. As a result, many people went to the emergency department with congestive heart failure, asthma and other health problems from smoke exposure as documented in an EPA study.

The wildfire provided a unique opportunity for researchers to evaluate the reasons behind the heart and respiratory problems caused from smoke exposure. They were interested in whether there are community characteristics than can be used to identify residents whose health might be at risk from wildfires or other sources of air pollution. What exactly did the communities along the Coastal Plain of North Carolina have in common?

Researchers analyzed daily rates of visits to the emergency departments during the fire event and community health factors such as access and quality of clinical care, health behaviors, socioeconomic factors and the characteristics of the physical environment. The findings, published in Environmental Health, indicate low socio-economic status alone can be used to determine if a community is at risk for congestive heart failure or other health problems observed. Low socio-economic status is a term used to describe a group of factors such as low income, inadequate education and safety concerns.

While the knowledge that people in poverty are at greater health risk from air pollution is not new, this study provides scientific evidence that a community’s socio-economic status can be used to identify those at greatest risk from air pollution. This is good news for the public health community and others interested in reaching people with heart or lung diseases who may be at risk of air pollution. This study and others being conducted across the country by epidemiologists are helping to find ways to address health problems in communities. 

About the Author: Ann Brown is the communications lead for EPA’s Air, Climate, and Energy Research Program.

Tweet! Tweet!
Remember to join us for a Twitter Chat with EPA research cardiologist Dr. Wayne Cascio tomorrow, February 20, at 2:30 pm. Follow #HealthyHeart or @EPAlive.

Be Smart, Protect Your Heart from Air Pollution

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Climate Change and Wildfires: What’s the Connection?

By Krystnell A. Storr

Forest fire and rising smoke

Forest fire

For me, fire comes from the end of a match or the flick of a lighter—a controllable little ball of fury the size of a fingertip. For others, it is the transformation of the towering pine trees that surround homes and roadways into a horde of fiery giants. Its march, dangerous and unruly, has made one thing very clear: the rise of wildfire activity in the U.S. is an important scientific and environmental issue—one that that is being amplified by the effects of climate change.

To determine an amount of wildfire activity in a given year, scientists measure the area burned.  The National Interagency Fire Center (NIFC) reports that in 2012 alone, 67,774 wildland fires burned through more than nine million acres of U.S. land, three times more than the five-year averages from a few decades ago.

Wildfires are unpredictable and containing them can be challenging and dangerous. According to the NIFC, last year the total direct costs of fire suppression exceeded 1.9 billion dollars nationwide. But that’s not all: wildfires are a major source of airborne pollutants such as fine particulate matter that can lead to serious health issues.

In a study funded by EPA, scientists are modeling projections of wildfire activity fifty years from now. The study takes into account the possible effects of global warming—changing vegetation and less precipitation—in areas already prone to wildfire activity, to determine how future fires may affect air quality.

Using past data, the team built models that link wildfire activity to meteorological conditions. The scientists estimate that by the year 2050, wildfire activity is expected to double in the Southwest, Pacific Northwest, Rocky Mountains Forest, and the Eastern Rockies/Great Plains regions.

The team showed that we may experience shorter springs and warmer summers that in turn would mean prolonged periods of wildfire activity. According to the study, the combination of a longer fire season and an increase in the acreage burned could have impacts far beyond the immediate fire zone, negatively affecting visibility in national parks and wilderness areas and worsening the air quality.

Results of the study have been published online in the scientific journal Atmospheric Environment.

Although a number of wildfire smoke forecasting methods are available, there is no systematic program aimed to lessen the public health burden in nearby communities. In another study, EPA scientists are evaluating the possibility of using smoke forecasts to help societies cope with and recover from wildfires. Understanding how climate change impacts the frequency and severity of wildfires, and in turn our environment and health, is one of the Agency’s priorities and an issue we should all be concerned about.

About the Author: Krystnell A. Storr is a student services contractor working on the Science Communications Team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.