Mass Timber Building Systems: Understanding the Options

Presented on September 16th, 2015 by Bernhard Gafner P.Eng., MIStructE, C.Eng., Dipl.Ing. FH/STV

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner ofhandling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Mass timber represents a rapidly advancing technology that can be utilized as an alternative to steel and concrete to frame a variety of mid- and high-rise building types. This presentation provides an overview of available mass timber systems, with an emphasis on their advantages and unique design considerations. Topics will include connections and fasteners, which differ from those used in light-frame wood construction, including available options and code requirements. Practical design considerations with regard to project location, climate, material sourcing, weather and fire protection, as well as detailing for dimensional variability, will also be reviewed. Cost estimating will be discussed, as successful mass timber projects require a complete understanding of both the system itself and impact on trades.

Learning Objectives

- 1) Discuss mass timber products and building systems available to North American building designers
- 2) Compare properties and performance characteristics of mass timber products and review unique design considerations
- 3) Examine practical design considerations related to the use of mass timber systems with regard to project location and climate, material sourcing, detailing for dimensional variability, connections, and cost efficiency.
- 4) Evaluate mass timber cost estimating criteria and review cost data.

OVERVIEW

CONTEXT

DESIGN

OVERVIEW BUILDING SYSTEMS

PRODUCTS

OVERVIEW BUILDING SYSTEMS

PRODUCTS

SIZES

LIGHT WOOD FRAME (STICK FRAME)

POST + BEAM (WITH MASS TIMBER OR LIGHT WOOD FRAME FLOORS)

MASS TIMBER (100%)

LIGHT WOOD FRAME

POST + BEAM

MASS TIMBER

LIGHT WOOD FRAME

POST + BEAM

MASS TIMBER FLOORS (AND SHEAR WALLS) MASS TIMBER WALLS AND FLOORS

LIGHT WOOD FRAME POST + BEAM MASS TIMBER

MASS TIMBER FLOORS (AND SHEAR WALLS) MASS TIMBER WALLS AND FLOORS

CONCRETE

LIGHT WOOD FRAME

MASONRY

STRUCTURAL STEEL

"MASS TIMBER CAN BE USED AS ALTERNATIVES TO CONCRETE, MASONRY AND STEEL IN MANY BUILDING TYPES"

SPEED

25%

CONSTRUCTION TRAFFIC

DECK LABOR

1:4

OVERVIEW BUILDING SYSTE

PRODUCTS

SIZES

Nail Laminated Timber

Alternative

- **Names:** nailed timber, nail-up, edge-lam, brettstapel
- **System:** regular framing members (2x, 3x) on edge + fastened together
- **Suppliers:** a good carpenter
- **Basic Info:** S-P-F / Douglas Fir or any other Floor, roof (and wall) with Plywood sheathing for lateral loads

Comments:

 Non-standardized panel system but base material covered with grading rules

Comments:

- Non-standardized panel system but base material covered with grading rules
- Specifications

Comments:

- Non-standardized panel system but base material covered with grading rules
- Specifications
- Requires care with regards to swelling / shrinkage perpendicular to grain

SAMUEL BRIGHOUSE ELEMENTARY, RICHMOND, BC

SFU UNIVERCITY CHILDCARE, BURNABY, BC

MOUNTAIN EQUIPMENT CO-OP, VANCOUVER, BC

Glue Laminated Timber

Alternative

- Names:glued edge laminated timber,edge laminated timber, edge-lam
- **System:** "glulam beams on edge"
- **Suppliers:** any glulam supplier
- Basic Info: S-P-F / D. Fir / Black Spruce / ... Adhesive: Phenol Resorcinol (black) or Melamine (clear) Adhesive amount: 1% by weight Floor, roof (and wall) with Plywood sheathing for lateral loads

Comments:

Standardized product

Comments:

- Standardized product
- Requires care with regards to swelling / shrinkage perpendicular to grain

Comments:

- Standardized product
- Requires care with regards to swelling / shrinkage perpendicular to grain
- Glulam beam ≠ GLT

KIN CENTRE ARENA COMPLEX, PRINCE GEORGE, BC

Cross Laminated Timber

Alternative

Names: cross laminated timber, x-lam

System: cross laminated timber panels $\rightarrow 2x$ members glued together

Suppliers: Structurlam (Penticton, BC), Nordic (Montreal, QC), Smartlam (Whitefish, MT), DR Johnson (Riddle, OR), European Suppliers

Basic Info: S-P-F / Black Spruce / ... Adhesive: Polyurethane Adhesive amount: 4% by weight Floor, roof and wall with joints detailed for lateral loads

Comments:

Standardized product

Comments:

- Standardized product
- Dimensionally very stable

Comments:

- Standardized product
- Dimensionally very stable
- Two directional span capabilities

UHNBC LEARNING & DEVELOPMENT CENTRE, PRINCE GEORGE, BC

UBC STUDENT RESIDENCE

SCL - LSL

Laminated Strand Lumber

LSL

Alternative

- Names: n/a
- **System:** laminated strand lumber (timber strands glued together)
- Suppliers: Weyerhauser*, Louisiana Pacific,
- Basic Info*: Material/fibre: Aspen Harvesting cycle: 60 to 70 years Adhesive: MDI - Isocyante Adhesive amount: 6% by weight Floor, roof and wall with joints detailed for lateral loads (limited thicknesses!)

LSL

Comments:

Standardized product
LSL

Comments:

- Standardized product
- Dimensionally stable in plan, sensitive to moisture in its thickness

GILMORE SKYTRAIN STATION, BURNABY, BC

FALSE CREEK COMMUNITY CENTRE, VANCOUVER, BC

SCL - LVL

Laminated Veneer Lumber

LVL

Alternative

Names: Microlam, Versalam

System: laminated veneer lumber (veneers stacked & glued together)

Suppliers: Louisianan Pacific*, Weyerhaeuser, Boise Cascade, West Fraser, Metsawood, ...

Basic Info*: Material/fibre: D. Fir Harvesting cycle: 80 years Adhesive: Phenol Formaldehyde Adhesive amount: 7% by weight Floor, roof and wall with joints detailed for lateral loads (limited thicknesses!)

LVL

Comments:

Standardized product

LVL

Comments:

- Standardized product
- Dimensionally stable in plan (can even add cross layers), sensitive to moisture in its thickness

PARASOL, SEVILLA, SPAIN

SCL - SECONDARY LAMINATED LVL

SECONDARY LAMINATED LVL

Alternative

- Names: N/A
- System: laminated veneer lumber (veneers stacked & glued together)
- Suppliers: Brisco
- **Basic Info:** Material/fibre: D. Fir Harvesting cycle: 80 years Adhesive: Phenol Formaldehyde Adhesive amount: 7% by weight Floor, roof and wall with joints detailed for lateral loads

SECONDARY LAMINATED LVL

Comments:

Standardized product

SECONDARY LAMINATED LVL

Comments:

- Standardized product
- Dimensionally sensitive in plan, stable in its thickness. Requires care with regards to swelling / shrinkage perpendicular to grain

WCC

Wood – Concrete - Composite

WCC

Alternative

Names: Timber – Concrete – Composite

System: Solid wood panel at bottom, concrete over top (acting as one unit)

Base layer can be nearly any solid wood panel

Connector supplied by wood panel supplier or general contractor

"Free", stiff and strong diaphragm

OVERVIEW BUILDING SYSTE

PRODUCTS

DEPTHS

WIDTH

LENGTH

LENGTH

OVERVIEW

CONTEXT

DESIGN

CONTEXT

THE SET OF CIRCUMSTANCES OR FACTS THAT SURROUND A PARTICULAR EVENT, SITUATION, ETC

CONTEXT

OR AS I LIKE TO CALL IT:

COLLECTING AND CONNECTING THE DOTS

COLLECTING THE DOTS...

CLIENT & DESIGN TEAM

PROCUREMENT

LOCATION

CAPACITY & CAPABILTY

TOLERANCE

... CONNECTING THE DOTS

THAT IS WHERE THE DESIGN WORK BEGINS

OVERVIEW

CONTEXT

DESIGN

DECIDE EARLY

"SYSTEM AND MATERIAL APPROPRA **DESIGN**"

PRODUCT SIZES

In general, all products have a similar char rate

- In general, all products have a similar nominal char rate
- Approximately $1 \frac{1}{2}$ " $1 \frac{3}{4}$ " / 60 minutes

- In general, all products have a similar nominal char rate
- Approximately $1 \frac{1}{2}^{"} 1 \frac{3}{4}^{"} / 60$ minutes
- Be careful with CLT if required rating is between 45 and 90 minutes

 \rightarrow Most of the time it's not a problem for panels with 5+ layers

DEPTH

"DESIGN IS MOSTLY GOVERNED BY DEFLECTION (STIFFNESS) AND / OR VIBRATION"

20' FLOOR SPAN 8" - 10"

16' FLOOR SPAN 6" – 8"

12' FLOOR SPAN 4" – 6"

NLT, GLT

0.25% CHANGE IN DIMENSION FOR EACH 1% CHANGE IN MOISTURE CONTENT

- 12% MC when installed
- 14% MC during construction
- 1 ³⁄₄" swelling in 30'

- 12% MC when installed
- 14% MC during construction
- 1 ³⁄₄" swelling in 30'

WEATHER PROTECTION STRATEGY

CONNECTIONS

Contraction of the second

SECONDARY IMPACTS

... AKA COST DIFFERENCE TO OTHER BUILDING SYSTEMS

CNC fabrication requires 3-D files

- CNC fabrication requires 3-D files
- Architectural 3-D models (REVIT) are not always compatible with fabrication models

- CNC fabrication requires 3-D files
- Architectural 3-D models (REVIT) are not always compatible with fabrication models
- 3-D shop drawing model including connections

AUTODESK[®] REVIT[®]

3D MANUFACTURING MODEL (3D-CAD/CAM)

DEPTH CALCULATOR

MATERIAL GALLERY

"SYSTEM AND MATERIAL APPROPRA **DESIGN**"

QUESTIONS?

This concludes The American Institute of Architects Continuing Education Systems Course

> Bernhard Gafner Fast+Epp Structural Engineers bgafner@fastepp.com