

TABLE 1FAIR QUALITY APPLICATION SUPPLEMENT

Permit No.: TBD			Application Submittal Date: July 7, 2014						
Company:	Lon C. H	ill LP	11						
RN:	RN1002	15979	Facility I	Facility Location: 3501 Callicoatte Rd. Corpus Christi, Tex			isti, Texas		
City:	Corpus (Christi	County:		Nueces			,	
Permit Unit I.D.:	TBD		Permit N	ame:	Lon C Hil	l Power Sta	tion		
Permit Activity:		New Source			Modificati	on			
Complete for all Powith a Project Er	ollutants nission				POLLU	JTANTS			
Increase.		Ozo	one	со	PM ₁₀	PM _{2.5}	NOv	SO ₂	Other ^[1]
		VOC	NO _x		10	11122.5	I.O.X	502	CO ₂ e
Nonattainment Potentially Applicab	ole?								No
PSD Potentially App	plicable?								Yes
Existing site PTE (tp	py)?								0.0
Proposed project emission increases (tpy from 2F ^[2])								2,517,769	
Is the existing site a source?	Is the existing site a major source?								No
If not, is the project source by itself?	a major								Yes
If site is major sourc project increase sign	e, is ificant?								Yes
If netting required, e	estimated st	tart of construct	ction:	01-May-15					
5 years prior to start	of construc	ction contemp	oraneous	01-May-10					
Estimated start of operation period			01-Apr-17						
Net contemporaneou including proposed p from Table 3F. (tpy	us change, project,								2,517,769
Major NSR Applica	ble?	No	No	No	No	No	No	No	Yes
			•••••••••••••••••••••••••••••	<u> </u>	•	•			
	Signatur	·e			Title			Date	

[1] Other pollutants. [Pb, H₂S, TRS, H₂SO₄, Fluoride excluding HF, etc.]

[2] Sum of proposed emissions minus baseline emissions, increases only.

The representations made above and on the accompanying tables are true and correct to the best of my knowledge.

EPA ARCHIVE DOCUMENT

S

TABLE 2FPROJECT EMISSION INCREASE

Pollutar	nt ^[1] :	CO ₂ e				Permit:	TBD			
Baseline	Baseline Period: to									
-	A B									
-	Affected or Modifi	ed Facilities ^[2]	Permit	Actual	Baseline	Proposed	Projected	Difference		r01
	FIN	EPN	No.	Emissions ^[3]	Emissions ^[4]	Emissions ^[5]	Actual Emissions	(B-A) ^[6]	Correction ^[7]	Project Increase ^[8]
1	CC-101	STK-101	TBD		0.0	1,256,916		1,256,916		1,256,916
2	CC-102	STK-102	TBD		0.0	1,256,916		1,256,916		1,256,916
3	ABL-100	ABLSTK-100	TBD		0.0	2,779		2,779		2,779
4	EGEN-100	EGENSTK-100	TBD		0.0	77		76.7		76.7
5	FWP-100	FWPSTK-100	TBD		0.0	35		35.3		35.3
6	FUGNG-100	FUGNG-100	TBD		0.0	1,043		1,043		1,043
7	SF6-100	SF6-100	TBD		0.0	4.1		4.1		4.1
8										
9										
10										
									Page Subtotal ^[9]	2,517,769

[1] Individual Table 2F's should be used to summarize the project emission increase for each criteria pollutant

[2] Emission Point Number as designated in NSR Permit or Emissions Inventory

[3] All records and calculations for these values must be available upon request

[4] Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously

demonstrated under 30 TAC 101, should be explained in the Table 2F supplement

[5] If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement

[6] Proposed Emissions (column B) minus Baseline Emissions (column A)

[7] Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate

must be provided in the Table 2F supplement

[8] Obtained by subtracting the correction from the difference. Must be a positive number.

[9] Sum all values for this page.

TABLE 3F PROJECT CONTEMPORANEOUS CHANGES^[1]

Company:		Lon C. Hill, LP								
Permit Application Number: TBD Criteria Pollutant:								CO2 _e		
							Α	В		-
Project Date ^[2]		Facility at Which Emission Change Occurred ^[3]		Permit No.	Project Name or Activity	Baseline Period	Proposed Emissions	Baseline Emissions	Difference (A-B) ^[6]	Creditable Decrease or
		FIN	EPN			(years)	(tons/year) ¹⁴	(tons/year) ^{reg}		Increase
1	TBD	CC-101	STK-101	TBD	Unit 101 Combined Cycle (GT+HRSG)	NA	1,256,916	0.0	1,256,916	1,256,916
2	TBD	CC-102	STK-102	TBD	Unit 102 Combined Cycle (GT+HRSG)	NA	1,256,916	0.0	1,256,916	1,256,916
	TBD	ABL-100	ABLSTK-100	TBD	Auxiliary Boiler	NA	2,779	0.0	2,779	2,779
	TBD	EGEN-100	EGENSTK-100	TBD	Emergency Generator	NA	76.7	0.0	76.7	76.7
	TBD	FWP-100	FWPSTK-100	TBD	Firewater Pump	NA	35.3	0.0	35.3	35.3
3	TBD	FUGNG-100	FUGNG-100	TBD	Fugitive GHG	NA	1,043	0.0	1,043	1,043
4	TBD	SF6-100	SF6-100	TBD	Electrical Equipment Insulation Leaks	NA	4.1	0.0	4.1	4.1
5										
6										
					Page	Subtotal ^[8]	2,517,769	0.0	2,517,769	2,517,769
				Summar	y of Contemporaneous Cha	anges Total	2,517,769	0.0	2,517,769	2,517,769

^[1] Individual Table 3F's should be used to summarize the project emission increase and net emission increase for each criteria pollutant.

^[2] The start of operation date for the modified or new facilities. Attach Table 4F for each project reduction claimed.

^[3] Emission Point No. as designated in NSR Permit or Emissions Inventory.

^[4] All records and calculations for these values must be available upon request.

^[5] All records and calculations for these values must be available upon request.

^[6] Proposed (column A) - Baseline (column B).

^[7] If portion of the decrease not creditable, enter creditable amount.

^[8] Sum all values for this page.

Summary of GHG and CO₂ Sitewide Emission Rates

			GHG Ma	ass Basis	CO. e Emission		
EPN	FIN	Name	Pollutant	Emission Rate (tpy)	Rate (tpy)		
			CO ₂	1,255,634			
STK-101	CC-101	Unit 101 Combined Cycle (GT+HRSG)	CH ₄	23.5	1,256,916		
			N ₂ O	2.3			
			CO ₂	1,255,634			
STK-102	CC-102	Unit 102 Combined Cycle (GT+HRSG)	CH ₄	23.5	1,256,916		
			N ₂ O	2.3			
	ABL-100		CO ₂	2,776			
ABLSTK-100		Auxiliary Boiler	CH ₄	0.05	2,779		
			N ₂ O	0.01			
	EGEN-100		CO ₂	76.5			
EGENSTK-100		Emergency Generator	CH ₄	0.003	77		
			N ₂ O	0.001			
			CO ₂	35.2			
FWPSTK-100	FWP-100	Firewater Pump	CH ₄	0.001	35		
			N ₂ O	0.0003			
FUGNG-100	FUGNG-100	Fugitive GHG	CH ₄	41.7	1,043		
SF6-100	SF6-100	Electrical Equipment Insulation Leaks	SF ₆	0.0002	4.15		
Total Sitewide Emission Rates 2,514,249							

GHG Emission Rates per Unit Summary Table (Siemens SCC6-5000F)

erre Ennosion nates pe	r onne oanninar y raione		1		
Air Dollutant	Emission Factor	Heat Input (HHV)	GHG Emission	Global Warming	CO ₂ e Emission Rate
All Pollutalit	(lb/MMBtu) ^{(1), (2)}	(MMBtu/yr) ⁽³⁾	Rate (tpy) ⁽⁴⁾	Potential (100yr.) ⁽⁵⁾	(tpy) ⁽⁶⁾
CO ₂	118.8		1,255,634	1	1,255,634
CH ₄	2.2E-03	21,136,220	23.5	25	588
N ₂ O	2.2E-04		2.3	298	694

Total GHG per Unit ⁽⁷⁾	1,255,660 tpy
Total CO ₂ e per Unit ⁽⁸⁾	1,256,916 tpy

GHG Emission Rates per Unit Summary Table (GE S207FA.04)

Ala Dallutant	Emission Factor	Heat Input (HHV)	GHG Emission	Global Warming	CO ₂ e Emission Rate
Air Pollutant	(lb/MMBtu) ^{(1), (2)}	(MMBtu/yr) ⁽³⁾	Rate (tpy) ⁽⁴⁾	Potential (100yr.) ⁽⁵⁾	(tpy) ⁽⁶⁾
CO ₂	118.8		1,170,989	1	1,170,989
CH ₄	2.2E-03	19,711,384	21.9	25	548
N ₂ O	2.2E-04		2.2	298	647

Total GHG per Unit ⁽⁷⁾	1,171,013 tpy
Total CO ₂ e per Unit ⁽⁸⁾	1,172,185 tpy

Notes:

N

(1) CO₂ emission factor calculated per 40 CFR Part 75, Appendix G, Equation G-4, as referenced in §98.43(a), where:

CO2 Emission Factor = 1,040 scf/MMBtu / 38	5scf/lbmole * 44lb/lbmole = 118.8 lb/MMBtu
Carbon based F-factor, F _c :	1,040

Standard Molar Volume:	385
Iolecular Weight CO ₂ , MW _{CO2} :	44

(2) CH₄ and N₂O emission factors per 40 CFR 98, Subpart C, Table C-2 for natural gas fired units. CH4 Emission Factor = 1.0E-03 kg/MMBtu * 1 metric ton/1,000 kg * 1.1023 short ton / metric ton * 2,000 lb/short ton = 2.2E-03 lb/MMBtu N2O Emission Factor = 1.0E-04 kg/MMBtu * 1 metric ton/1,000 kg * 1.1023 short ton / metric ton * 2,000 lb/short ton = 2.2E-04 lb/MMBtu

Where 1.1023 short ton/metric ton per 40 CFR 98, Subpart D, §98.43(a)(1)

- (3) Heat Input (HHV) maximum annual heat input for all operating scenarios evaluated for both Siemens SCC6-5000F and GE S207FA.04 including normal and MSS operation (8,760 hr/yr)
- (4) Emission Rate CO2 (tpy) = Emission Factor CO2 (lb/MMBut) * Heat Input (MMBtuyr) * 1ton/2,000 lb
 CO2 Emission Rate (Siemens SCC6-5000F) = 118.8 lb/MMBtu * 21,136,220 MMBtu/yr * 1ton/2,000 lb = 1,255,634 tpy
 Emission Rate CH₄ (tpy) = Emission Factor CH₄ (lb/MMBut) * Heat Input (MMBtuyr) * 1ton/2,000 lb + Purging CH4 Emission Rate (tpy)
 Purging CH₄ Emission Rate (tpy) = Gas Turbine Purging CH₄ (tpy) + Duct Burner Purging CH₄ (tpy) + Pilot CH₄ (tpy)
 CH4 Emission Rate (Siemens SCC6-5000F) = [2.2E-03 lb/MMBtu * 21,136,220 MMBtu/yr * 1ton/2,000 lb] + 0.20 tpy = 23.5 tpy
 Purging CH4 Emission Rate = 0.16 tpy + 0.04 tpy + 0.001 tpy = 0.20 tpy
 Emission Rate (Siemens SCC6-5000F) = 2.2E-04 lb/MMBtu * 21,136,220 MMBtu/yr * 1ton/2,000 lb
 N2O Emission Rate (Siemens SCC6-5000F) = 2.2E-04 lb/MMBtu * 21,136,220 MMBtu/yr * 1ton/2,000 lb = 2.3 tpy
 (5) Global Warming potential per 40 CFR 98, Subpart A, Table A-1
- (6) CO₂e (tpy) = Mass Emission Rate (tpy) * Global Warming Potential CH4 as CO2e (Siemens SCC6-5000F) = 23.5 tpy * 25 = 588 tpy
- (7) Total GHG emission rate per unit = Sum of GHG mass emission rates Total GHG (Siemens SCC6-5000F) = 1,255,634 + 23.5 + 2.3 = 1,255,660 tpy
- (8) Total CO2e emission rate per unit = Sum of CO2e emission rates Total CO2e (Siemens SCC6-5000F) = 1,255,634 + 588 + 694 = 1,256,916 tpy

Fuel Purging

Occasionally during startup, shutdown, or maintenance activities, natural gas is purged to the atmosphere to reduce the header pressure. Fuel purging emissions are based on the Universal Ideal Gas Law, with the assumption that in one hour, the entire length of pipe is purged once and the purging takes place for every startup and shutdown of the units.

Parameter	Units	Gas Turbine	Duct Burner	Pilot
Line Diameter ⁽¹⁾	in	3.00	6.00	1.00
Line Length ⁽¹⁾	ft	10.00	5.00	5.00
Line Pressure ⁽¹⁾	psig	450	40	15
Line Temperature ⁽¹⁾	⁰F	125	42	42
$CH_4 MW^{(2)}$	lb/lbmole	16.77	16.77	16.77
Line Volume ⁽³⁾	cf	0.49	0.98	0.03
CH ₄ Moles in Line ⁽⁴⁾	lbmole	0.04	0.01	0.0002
CH ₄ Pounds in Line ⁽⁵⁾	lb/purge	0.61	0.17	0.003
Annual No. of Purges per Unit ⁽⁶⁾	purges/yr	520	520	520
CH ₄ Annual Emission Rate ⁽⁷⁾	tpy	0.16	0.04	0.001

Notes:

(1) Line characteristics per engineering knowledge.

(2) Natural gas molecular weight (MW) per Natural Gas Fuel Analisys.

(3) Line Volume = pi()/4 * D^2 * L

Gas Turbine Line Volume = pi()/4 * (3.00 inch * 1ft/12inch)^2 * 10.00 ft = 0.49 cf

(4) Universal Ideal Gas Law

Gas Turbine Moles in Line = n = P * V / (R * T) = (450 + 14.656) psia * 0.49 cf / (10.73 * (125 + 459.67) R) = 0.036 lbmole

(5) Pounds in Line (lb) = Moles in Line (lbmole) * Molecular Weight (lb/lbmole)

Gas Turbine Pounds in Line = 0.036 lbmole * 16.77 lb/lbmole = 0.61 lb

(6) Annual No. of Purges = Annual No. of Startups and Shutdowns

(7) CH₄ Annual Emission Rate (tpy) = CH₄ Pounds in Line (lb/purge) * Annual No. of Purges (purges/yr) * 1ton/2,000lb GT CH4 Annual Emission Rate per Unit = 0.61 lb/purge * 520 purges/yr * 1ton/2,000lb = 0.16 tpy

Auxiliary Boiler GHG Emission Rates Summary Table

Air Pollutant	Emission Factor (kg/MMBtu) ^{(1),(2)}	Heat Input (HHV) (MMBtu/yr) ⁽³⁾	GHG Emission Rate (tpy) ⁽⁴⁾	Global Warming Potential (100yr.) ⁽⁵⁾	CO ₂ e Emission Rate (tpy) ⁽⁶⁾
CO ₂	53.02		2,776	1	2,776
CH ₄	1.0E-03	47,500	0.05	25	1.31
N ₂ O	1.0E-04		0.01	298	1.56

Total GHG ⁽⁷⁾	2,776 tpy
Total $CO_2e^{(8)}$	2,779 tpy

Notes:

(1) CO₂ emission factor per 40 CFR 98, Subpart C, Table C-1 for natural gas fired units.

(2) CH₄ and N₂O emission factors per 40 CFR 98, Subpart C, Table C-2 for natural gas fired units.

(3) Heat Input (HHV) (MMBtu/yr) = Desing Heat Input (MMBtu/hr) * Annual Hours of Operation (hr/yr)

Heat Input (HHV) = 95.0 MMBtu/hr * 500 hr/yr = 47,500 MMBtu/yr

(4) Emission Rate (tpy) = Emission Factor (kg/MMBtu) * Heat Input (MMBtu/yr) * 1 metric ton/1,000kg * 1.1023 short ton/metric ton CH4 Emission Rate = 0.001 kg/MMBtu * 47,500 MMBtu/yr * 1 metric ton/1,000kg * 1.1023 short ton/metric ton = 0.05 tpy Where 1.1023 short ton/metric ton per 40 CFR 98, Subpart D, §98.43(a)(1)

(5) Global Warming potential per 40 CFR 98, Subpart A, Table A-1

(6) CO₂e (tpy) = Emission Rate (tpy) * Global Warming Potential

CH4 as CO2e = 0.05 tpy * 25 = 1.3 tpy

(7) Total GHG emission rate = Sum of GHG emission rates Total GHG = 2,776 + 0.05 + 0.01 = 2,776 tpy

(8) Total CO₂e emission rate = Sum of CO2e emission rates

Total CO2e = 2,776 + 1.31 + 1.56 = 2,779 tpy

Emergency Generator GHG Emission Rates Summary Table CO₂e Emission **Emission Factor** Heat Input (HHV) **GHG** Emission **Global Warming** Air Pollutant (kg/MMBtu)^{(1),(2)} (MMBtu/yr)⁽³⁾ Rate (tpy)⁽⁴⁾ Potential (100yr.)⁽⁵⁾ Rate (tpy)⁽⁶⁾ CO_2 73.96 76.47 1 CH_4 3.0E-03 0.003 938 25 N_2O 6.0E-04 0.001 298

Total GHG ⁽⁷⁾	76 tpy
Total CO ₂ e ⁽⁸⁾	77 tpy

76.5

0.08

0.18

Notes:

(1) CO₂ emission factors per 40 CFR 98, Subpart C, Table C-1 for Distillate Fuel Oil No. 2

(2) CH₄ and N₂O emission factors per 40 CFR 98, Subpart C, Table C-2 for Petroleum (all fuel types in Table C-1

(3) Heat Input based on engineering knowledge.

(4) Emission Rate (tpy) = Emission Factor (kg/MMBtu) * Heat Input (MMBtu/yr) * 1 metric ton/1,000kg * 1.1023 short ton/metric ton CH4 Emission Rate = 0.003 kg/MMBtu * 938 MMBtu/yr * 1 metric ton/1,000kg * 1.1023 short ton/metric ton = 0.003 tpy

Where 1.1023 short ton/metric ton per 40 CFR 98, Subpart D, §98.43(a)(1)

- (5) Global Warming potential per 40 CFR 98, Subpart A, Table A-1
- (6) CO_2e (tpy) = Emission Rate (tpy) * Global Warming Potential

CH4 as CO2e = 0.003 tpy * 25 = 0.1 tpy

- (7) Total GHG emission rate = Sum of GHG emission rates Total GHG = 76.5 + 0.003 + 0.001 = 76 tpy
- (8) Total CO2e emission rate = Sum of CO2e emission rates

Total CO2e = 76.5 + 0.08 + 0.18 = 77 tpy

Firewater Pump GHG Emission Rates Summary Table

Air Pollutant	Emission Factor (kg/MMBtu) ^{(1),(2)}	Heat Input (HHV) (MMBtu/yr) ⁽³⁾	GHG Emission Rate (tpy) ⁽⁴⁾	Global Warming Potential (100yr.) ⁽⁵⁾	CO ₂ e Emission Rate (tpy) ⁽⁶⁾
CO ₂	73.96		35.21	1	35.2
CH ₄	3.0E-03	431.90	0.001	25	0.04
N ₂ O	6.0E-04		0.0003	298	0.09

Total GHG ⁽⁷⁾	35 tpy
Total CO ₂ e ⁽⁸⁾	35 tpy

Notes:

(1) CO₂ emission factors per 40 CFR 98, Subpart C, Table C-1 for Distillate Fuel Oil No. 2

(2) CH₄ and N₂O emission factors per 40 CFR 98, Subpart C, Table C-2 for Petroleum (all fuel types in Table C-1

(3) Heat Input based on engineering knowledge.

(4) Emission Rate (tpy) = Emission Factor (kg/MMBtu) * Heat Input (MMBtu/yr) * 1 metric ton/1,000kg * 1.1023 short ton/metric ton CH4 Emission Rate = 0.003 kg/MMBtu * 432 MMBtu/yr * 1 metric ton/1,000kg * 1.1023 short ton/metric ton = 0.001 tpy

Where 1.1023 short ton/metric ton per 40 CFR 98, Subpart D, §98.43(a)(1)

- (5) Global Warming potential per 40 CFR 98, Subpart A, Table A-1
- (6) CO₂e (tpy) = Emission Rate (tpy) * Global Warming Potential CH4 as CO2e = 0.001 tpy * 25 = 0.04 tpy
- (7) Total GHG emission rate = Sum of GHG emission rates
- Total GHG = 35.2 + 0.001 + 0.0003 = 35 tpy

(7) Total CO2e emission rate = Sum of CO2e emission rates

Total CO2e = 35.2 + 0.04 + 0.09 = 35 tpy

Fugitive GHG Emission Rates Summary Table

EPN	Air Pollutant	Weight % ⁽¹⁾	GHG Emission Rate (tpy) ⁽⁴⁾	Global Warming Potential (100yr.) ⁽³⁾	CO ₂ e Emission Rate (tpy) ⁽⁴⁾
FUGNG-100	CH ₄	91.84%	41.71	25	1,043

Notes:

(1) Methane content (in wt%) per fuel analysis.

(2) Annual Emission Rate (tpy) = Service Total Emission Rate (tpy) * CH4 wt%

CH4 Annual Emission Rate = 45.42 tpy * 91.84% = 41.71 tpy

(3) Global Warming potential per 40 CFR 98, Subpart A, Table A-1 [78 FR 71948, Nov. 29, 2013]

(6) CO₂e (tpy) = Emission Rate (tpy) * Global Warming Potential

CH4 as CO2e = 41.71 tpy * 25 = 1,043 tpy

Natural Gas Service

Component Type	Component Service	Component Count (cpte) ⁽¹⁾	Emission Factor (lb/hr-cpte) ⁽²⁾	Hours in Service (hr/yr)	Control Efficiency (%) ⁽³⁾	Max. Hourly Emission Rate (lb/hr) ⁽⁴⁾	Annual Emission Rate (tpy) ⁽⁵⁾
Valves	Gas/Vapor	520	0.0089	8,760	0.0%	4.63	20.27
Flanges/Connectors	Gas/Vapor	1460	0.0029	8,760	0.0%	4.23	18.54
Compressors	Gas/Vapor	3	0.5027	8,760	0.0%	1.51	6.61
					Service Total	10.37	45.42

Notes:

(1) Component counts are based on preliminary design information and account for the 2 combined cycle units.

(2) "SOCMI without ethylene" factors.

(3) No control efficiency is claimed for natural gas service.

(3) Max. Hourly Emission Rate (lb/hr) = Component Count (cpte) * Emission Factor (lb/hr-cpte) * (1 - Control Eff%) Max. Hourly Emission Rate Valves in NG Service = 520 cpte * 0.0089 lb/hr-cpte * (1 - 0.0%) = 4.63 lb/hr

(4) Annual Emission Rate (tpy) = Max. Hourly Emission Rate (lb/hr) * Hours in Service (hr/yr) * 1ton,2,000lb Annual Emission Rate Valves in NG Service = 4.63 lb/hr * 8,760 hr/yr * 1ton/2,000lb = 20.27 tpy

7/8

Electrical Equipment Insulation SF₆ Leaks Emission Rates Summary Table

EPN	Air Pollutant	GHG Emission Rate (tpy) ⁽⁴⁾	Global Warming Potential (100yr.) ⁽²⁾	CO₂e Emission Rate (tpy) ⁽³⁾
SF6-100	SF ₆	1.82E-04	22,800	4.15

Notes:

(1) Annual SF6 Emission Rate (tpy) = Sum [SF₆ Gas Hold by CB * Annual Leak Rate (%/yr)] * $1 \tan/2,000$ lb

Annual SF6 Emission Rate = [2GT * 24.25 lb/GT * 0.50% + 1 ST * 24.25 lb/ST * 0.50%] * 1 ton/2,000 lb = 1.82E-04 tpy (2) Global Warming potential per 40 CFR 98, Subpart A, Table A-1 [78 FR 71948, Nov. 29, 2013]

(3) CO_2e (tpy) = Emission Rate (tpy) * Global Warming Potential

SF6 as CO2e = 18.19E-05 tpy * 22,800 = 4.15 tpy

Electrical Equipment Characteristics

	GT Breakers	ST Breakers
No. of Breakers	2	1
GT Breaker Type ⁽¹⁾	TBD	TBD
GT Operating Mechanism ⁽¹⁾	TBD	TBD
SF_6 Gas Hold by $GCB^{(1)}$	24.25 lb	24.25 lb
Annual Leak Rate ⁽²⁾	0.50%	0.50%

Notes:

(1) Gas insulated generator circuit breaker are part of an enclosed system. Per vendor data no SF₆ bleeding should occur. Generator circuit breaker SF6 content is approximate 11 kg per breaker.

(2) IEC Standard for new equipment leakage, as published on "SF₆ Leak Rates from High Voltage Circuit Breakers" U.S. EPA Investigates Potential Greenhouse Gas Emission Sources" (J. Blackman, et al.)