U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Training & Events

Upcoming Internet Seminars
More Information
Upcoming Internet Seminars RSS Feed
Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
December 2016
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
 
 
>

Webinar on the CERCLA 108(b) Financial Responsibility Formula

EPA plans to host an informational public webinar to describe key aspects of the financial responsibility formula included in the proposed financial responsibility requirements under CERCLA § 108(b) for classes of facilities in the hardrock mining industry.

EPA has set up an electronic mailbox for participants to submit questions prior to the webinar, and EPA will seek to respond during the webinar. However, due to the volume of questions anticipated, EPA may not be able to respond to all questions. Please submit any advance questions relating to the financial responsibility formula to: 108bwebinarquestions@epa.gov with the subject line “Formula”. The deadline for submitting advance questions is January 23, 2017. EPA also expects to accept questions during the webinar. Do not submit comments on the rule to this mailbox. The comment period will begin after publication of the proposed rule in the Federal Register. To ensure EPA considers them, comments on the proposed rule must be submitted in accordance with the instructions provided with the published version of the proposed rule in the Federal Register.

Webinar on Proposed Financial Responsibility Requirements under CERCLA § 108(b) for Classes of Facilities in the Hardrock Mining Industry

EPA plans to host an informational public webinar to present an overview of the proposed financial responsibility requirements under CERCLA § 108(b) for classes of facilities in the hardrock mining industry. EPA intends to cover the structure of the proposed rule and outline key background documents that accompany the rule. EPA also expects to discuss the public comment process on the proposed rule.

EPA has set up an electronic mailbox for participants to submit questions prior to the webinar, and EPA will seek to respond during the webinar. However, due to the volume of questions anticipated, EPA may not be able to respond to all questions. Please submit any advance questions to: 108bwebinarquestions@epa.gov with the subject line “108(b) webinar”. The deadline for submitting advance questions is January 3, 2017. EPA also expects to accept questions during the webinar. Do not submit comments on the rule to this mailbox. The comment period will begin after publication of the proposed rule in the Federal Register. To ensure EPA considers them, comments on the proposed rule must be submitted in accordance with the instructions provided with the published version of the proposed rule in the Federal Register.

Hazardous Waste Generator Improvements Final Rule

EPA recently overhauled the hazardous waste generator regulations under the Resource Conservation and Recovery Act (RCRA) to improve compliance and thereby enhance protection of human health and the environment. These changes are both a result of EPA's experience in implementing and evaluating the hazardous waste generator program over the last 30 years, as well as a response to concerns and issues identified by the states and regulated community. This webinar will delve into the recent changes and describe in detail:

  • Which components of the hazardous waste generator regulatory program were revised;
  • Which gaps in the regulations were addressed in this rule;
  • The greater flexibility provided by this rule for hazardous waste generators to manage their hazardous waste in a cost-effective and protective manner;
  • How the hazardous waste generator regulations were reorganized to make them more user-friendly and thus improve their usability by the regulated community; and
  • What technical corrections and conforming changes were made to address inadvertent errors, remove obsolete references to programs that no longer exist, and improve the readability of the regulations.
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


Soil Sampling and Decision Making Using Incremental Sampling Methodology - Parts 1 and 2

Interstate Technology Regulatory Council When sampling soil at potentially contaminated sites, the goal is collecting representative samples which will lead to quality decisions. Unfortunately traditional soil sampling methods don't always provide the accurate, reproducible, and defensible data needed. Incremental Sampling Methodology (ISM) can help with this soil sampling challenge. ISM is a structured composite sampling and processing protocol that reduces data variability and provides a reasonable estimate of a chemical's mean concentration for the volume of soil being sampled. The three key components of ISM are systematic planning, field sample collection, and laboratory processing and analysis. The adequacy of ISM sample support (sample mass) reduces sampling and laboratory errors, and the ISM strategy improves the reliability and defensibility of sampling data by reducing data variability.

ISM provides representative samples of specific soil volumes defined as Decision Units. An ISM replicate sample is established by collecting numerous increments of soil (typically 30 to 100 increments) that are combined, processed, and subsampled according to specific protocols. ISM is increasingly being used for sampling soils at hazardous waste sites and on suspected contaminated lands. Proponents have found that the coverage afforded by collecting many increments, together with disciplined processing and subsampling of the combined increments, yields consistent and reproducible results that in most instances have been preferable to the results obtained by more traditional (e.g. discrete) sampling approaches.

This 2-part training course along with ITRC's web-based Incremental Sampling Methodology Technical and Regulatory Guidance Document (ISM-1, 2012) is intended to assist regulators and practitioners with the understanding the fundamental concepts of soil/contaminant heterogeneity, representative sampling, sampling/laboratory error and how ISM addresses these concepts. Through this training course you should learn:

  • basic principles to improve soil sampling results
  • systematic planning steps important to ISM
  • how to determine ISM Decision Units (DU)
  • the answers to common questions about ISM sampling design and data analysis
  • methods to collect and analyze ISM soil samples
  • the impact of laboratory processing on soil samples
  • how to evaluate ISM data and make decisions

In addition this ISM training and guidance provides insight on when and how to apply ISM at a contaminated site, and will aid in developing or reviewing project documents incorporating ISM (e.g., work plans, sampling plans, reports). You will also be provided with links to additional resources related to ISM.

The intended users of this guidance and training course are state and federal regulators, project managers, and consultant personnel responsible for and/or directly involved in developing, identifying or applying soil and sediment sampling approaches and establishing sampling objectives and methods. In addition, data end users and decision makers will gain insight to the use and impacts of ISM for soil sampling for potentially contaminated sites.

Recommended Reading: We encourage participants to review the ITRC ISM document(http://www.itrcweb.org/ISM-1/) prior to participating in the training classes. If your time is limited in reviewing the document in advance, we suggest you prioritize your time by reading the Executive Summary, Chapter 4 "Statistical Sampling Designs for ISM," and Chapter 7 "Making Decisions Using ISM Data" to maximize your learning experience during the upcoming training classes.

Groundwater Statistics for Environmental Project Managers

Interstate Technology Regulatory Council Statistical techniques may be used throughout the process of cleaning up contaminated groundwater. It is challenging for practitioners, who are not experts in statistics, to interpret, and use statistical techniques. ITRC developed the Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013, http://www.itrcweb.org/gsmc-1/) and this associated training specifically for environmental project managers who review or use statistical calculations for reports, who make recommendations or decisions based on statistics, or who need to demonstrate compliance for groundwater projects. The training class will encourage and support project managers and others who are not statisticians to:

ITRC's Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013) and this associated training bring clarity to the planning, implementation, and communication of groundwater statistical methods and should lead to greater confidence and transparency in the use of groundwater statistics for site management.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf


ITRC also offers a 2-day PVI focused classroom training at locations across the US. The classroom training provides participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Learn more at the ITRC PVI classroom training page.
The Training Exchange (Trainex)

The Training Exchange website (Trainex) is designed to provide a wide range of training information to EPA, other federal agency, state, tribal, and local staff involved in hazardous waste management and remediation. Trainex focuses on free training directed to federal and state staff. This site includes training schedules for deliveries of many courses, both classroom and Internet-based.

EPA works in partnership with organizations, such as the Interstate Technology Regulatory Council (ITRC), and other agencies, such as the Agency for Toxic Substances and Disease Registry (ATSDR), to offer training relevant to hazardous waste remediation, site characterization, risk assessment, emergency response, site/incident management, counter-terrorism, and the community's role in site management and cleanup.

Top of Page