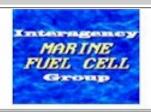


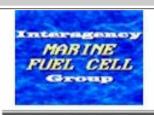
FUEL CELL PROGRAM

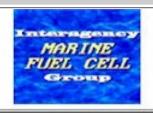
(The following is an informational brief given to the Fuel Cell Technology Summit)


> Presented by Daniel J. Gore, Project Engineer Maritime Administration (202) 366-1886



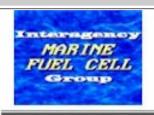
Benefits of Fuel Cells in Marine Applications

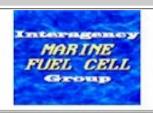

- Reduce CO2 Pollution; < 0.1 ppm NO_X/Particulates
- 10 20% More Fuel Efficient than Diesel-Electric
- Reduce Power Room Noise by 10 -20 dB
- Reduce IR Signature
- Enables Flexible Power Distribution
- · Reduce Power Room Maint.
- Reduce Engineering Billets
- Produce Potable Water as a By-product
- Provides Waste Heat for Other Applications



Marine Technical Risk Areas

- Marine Diesel Fuel Reformation and Contaminant Removal
- Salt-laden Air
- Shock and Vibration
- Ship Motion
- System Transient Response
- Start-up Time





Other Issues to be Addressed

- · Costs
- Reliability and Maintainability
- Duty Cycle
- Power Density

- · Cell Life
- · Signature Reductions
- · Environmental Compliance

Operation on Diesel Fuel

Challenges

- Reforming
- Reformate Cleanup (Contaminant Removal)
- Efficient System Integration
- Transient Response

Interagency Work Group for Marine Applications

Participants:

Department of Navy

Chief of Naval Operations

Naval Sea Systems Command

Office of Naval Research

Naval Surface Warfare Center, Annapolis Detachment

Department of Transportation

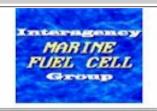
U.S. Coast Guard

Maritime Administration

Research and Special Programs Administration

Department of Commerce

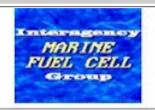
National Oceanic and Atmospheric Administration


Department of Energy

Federal Energy Technology Center

Interested Federal Agencies:

Federal Railroad Administration, NavAir Federal Transit Administration, US Army CECOM



Interagency Mission Statement

- Foster the use of Fuel Cells for Shipboard Applications Utilizing Diesel Fuels to Fulfill National Transportation Needs.
- Transfer the Technology to the Public.
- Actively Involve Industry in the Development Efforts.
- Reduce Duplicative Efforts Coordinate/Cooperate on Marine Fuel Cell Requirements.
- · Demonstrate the Effectivenss of Focused Interagency Partnership.

Marine Fuel Cell Implementation Plan

Preliminary Actions: (FY 97)

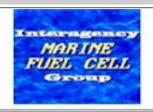
- Draft Interagency MOU
- Solicit Marine Fuel Cell Proposals______

Phase I: (FY98, FY99)

- 2.5 MW Ship Service Fuel Cell Power Plant Conceptual Design
- Critical Component Risk Reduction Demonstration (i.e. Shock, Vibration, Salt Atmosphere)
- · Trade-off Studies to Optimize Cell Design
- Technical, Cost & Schedule to Build 0.5 MW Reduced-Scale Demonstrator

Phase II: (FY99-00-01)

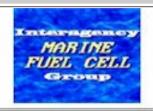
- 0.5 MW Reduced-Scale Demonstrator
- Land-Based Testing for Design Validation


Concurrent Action: (FY 98-99)

Integration Study of Molten Carbonate Fuel Cell Aboard 2.5 MW T-AGOS Vessel

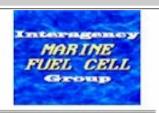
Phase III: (FY01-02)

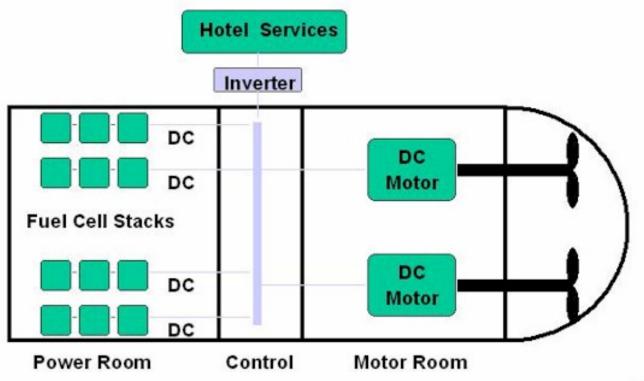
- Perform At-Sea Demonstration
- Dynamic Computer Model



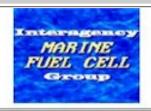
PROGRAM STATUS

- · MOU Signed
- Solicitation Issued
- Proposals Received and Evaluated
- Phase I Award made for Molten Carbonate Plant
- Phase I Award for Proton Exchange Membrane Plant
- Award Made for T-AGOS Ship Fuel Cell Integration Study

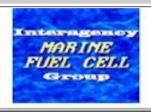



RECENT PROGRAM STATUS

- PEM and Molten Carbonate Designs Rapidly Maturing
- Navy to Downselect to One Technology Phase II
- Coast Guard Worldwide Market Analysis Underway
 - · Tens of Thousands Sizable HP Vessels Worldwide
- Coast Guard Considering Remote Light Stations
- MARAD/USMMA Retrofitting Natural Gas Fueled T-AGOS Vessel
 - · Will be Available for Fuel Cell Testing on Nat Gas, Methanol, Diesel
- RSPA SBIR for Shipboard Natural Gas Reformation
- ABS Intent on Participating in Marine Fuel Cell Work
- Hydrogen Marine Fuel Cell Program Recently Formed

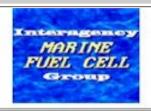


Potential T-AGOS Ship Configuration



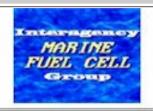
NAVY'S FUEL CELL TRANSITIONAL GOALS

- DEMONSTRATE VIABILITY OF FUEL CELLS ON DIESEL FUEL CONTAINING 1% SULFUR
- PERFORM AT SEA DEMONSTRATION OF 500 KW MARINE FUEL CELL PLANT
- CONSIDERATION OF FUEL CELLS FOR SHIP'S SERVICE POWER



COAST GUARD'S TRANSITIONAL GOALS

- ALSO CONSIDER SULFUR FREE DIESEL FUEL
- PERFORM SIMULTANEOUS STUDY OF 2400 KW T-AGOS VESSEL RETROFIT - SHIP'S SERVICE AND PROPULSION POWER
- PERFORM AT SEA DEMONSTRATION OF 500 KW MARINE FUEL CELL ON T-AGOS VESSEL
- CONSIDER RETROFIT OF ENTIRE T-AGOS POWER PLANT WITH FUEL CELLS
- CONSIDERING REMOTE STATION POWER



NOAA'S FUEL CELL TRANSITIONAL GOALS

 SHARE FUEL CELL TECHNOLOGY AND INFORMATION WITH THE COMMERCIAL FISHING INDUSTRY

MARAD'S FUEL CELL TRANSITIONAL GOALS

- DIESEL FUEL CONTAINING 1% SULFUR; ALSO CONSIDER NATURAL GAS AS FUEL
- PERFORM PHASE III TEST 500 KW MARINE FUEL CELL ON T-AGOS VESSEL
- SHARE LESSONS LEARNED WITH INDUSTRY
- CONSIDER FACILITATING DESIGN AND INSTALLATION OF FULL SCALE FUEL CELL PLANT ON COASTWISE VESSEL OR FERRY FOR PROPULSION AND SHIP'S SERVICE POWER

END