Ping Pong Ball Anemometer

Objective: To find the relationship between wind speed and the angle measured on a ping-pong ball anemometer.

Materials:

- 2 Protractors
- Ping-pong ball
- String
- Straws
- Fan
- Digital Anemometer

Investigative Question: How does the angle of the ping-pong ball anemometer change as the speed of the wind changes.

Hypothesis:

Justification/Explanation

Data:

Wind Speed (mph)	Angle of Ping-Pong Ball (${ }^{\circ}$)

Create a Scatter Plot of Power vs. Angle below:

Analysis:

1) Draw a line of best fit.
2) Find the y-intercept. \qquad 5) Find the run. \qquad
3) Pick two points on the line. \qquad 6) Find the slope. \qquad
4) Find the rise. \qquad 7) Write the equation of the line. \qquad
If the wind is blowing at 5 mph , how what will be the reading on the ping-pong ball anemometer? (Use your equation.) \qquad
If the wind creates a reading of 17° on the ping-pong ball anemometer, how fast is it blowing? (Use your graph.) \qquad
What does your y-intercept mean? \qquad
What does your slope mean? \qquad
Who would care about wind speed? \qquad
Why would they care about wind speed? \qquad
What is the angle on the ping-pong ball anemometer outside today? \qquad
What is the wind speed outside today? \qquad

Extension:

To find wind speed easily and accurately, without using the graph, create an equation that uses angle read on the ping-pong ball anemometer as the input and wind speed as the output.

1) Write the equation you created from the slope and y-intercept.
2) Solve for the independent variable.

If the wind creates a reading of 17° on the ping-pong ball anemometer, how fast is it blowing? (Use your new equation.) \qquad
What wind speed will it take to get an angle of 90° ? \qquad
Which equation did you use, new or old?
How could you have used the other one? \qquad
If the wind speed is 38 mph , what will the reading be on the ping-pong ball anemometer? \qquad
What do you know about the result? \qquad

