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Objectives

• Review previous studies on how the fuel cell 
and energy storage sizing and choices can 
affect efficiency and performance.

• Use ADVISORTM to show the fuel cell and 
energy storage system demands under drive 
cycle and performance tests.

• Support the FreedomCAR Energy Storage 
technical team in defining energy storage 
requirements for fuel cell vehicles.
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Fuel Cell/Energy Storage Hybridization

Energy 
Storage

Fuel 
Cell 

Fuel 
Cell

Energy
Storage



5 9th Ulm Electrochemical Talks

Fuel Cell HEV –
Fitting the System in the Car
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Previous Studies

• Hybridization of a fuel cell vehicle with energy 
storage improves fuel economy and performance, 
and makes it practical (UCD, VTech, ANL, NREL). 
Hybridization:
– Captures regenerative breaking. 

– Improves transient response.

– Uses a smaller, lower cost fuel cell.

– Warms up the fuel cell or reformer.

• Some demonstration prototype fuel cell vehicles 
are hybrids:
– Toyota FCHV – (NiMH batteries)

– Honda FCXV4 – (ultracapacitors)
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Optimization of Fuel Cell Vehicle Design 
Provides Insight into System Trade-Offs

• Derivative-free optimization algorithms 
are necessary for the complex design 
space of HEVs.

• The drive cycle influences the optimal 
degree of hybridization and control 
parameters.

• Fuel cell transient response capability is 
critical for a “pure” fuel cell vehicle. 

• An optimized hybrid design can nullify 
the effects of fuel cell transient 
response.

• The fuel economy impact of gasoline 
reformer warmup may be substantial.

• The relatively small energy storage 
system can overcome the warmup
limitations of the reformer.
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Roles of Energy Storage System (ESS)

• Mostly likely
Regenerative braking capture
Traction assist during 
acceleration (FC slow ramp rate) 
Traction assist during high power 
transients (downsizing FC)

• Probably  
Traction power during fuel cell 
startup
Fuel cell system startup and 
shutdown

• Not desirable
Sustained gradeability
Electrical accessory loads
(in steady state)

The combined FC and ESS hybridized 
system must meet performance target 
requirements of the vehicle:

Acceleration
Top speed
Grade sustainability
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ADVISORTM Tool Is Used for 
HFCV Simulations

• ADVISORTM = ADvanced VehIcle SimulatOR
– Simulates conventional, electric, or hybrid vehicles (series, 

parallel, or fuel cell).
– Simulates various components (ES, FC) and drive cycles.

• ADVISORTM was created in 1994 to support DOE Hybrid Program 
research decisions.

• Available from www.nrel.gov/transportation/analysiswww.nrel.gov/transportation/analysis..
• Downloaded by more than 8000 people around the world.
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Typical Vehicle Specifications and 
Performance Assumptions

Vehicle Characteristics
Assumption Description Units mid-size SUV mid-size Car

Vehicle Description  -- 
Rear wheel drive 

mid-size SUV
Front wheel drive 

mid-size car
Base Conventional Vehicle Mass kg 1865 1480
Base Vehicle Glider Mass kg 1276 1074
Cargo Mass kg 136 136
Fuel Cell Vehicle Mass kg 1923 1553
Aero. Drag Coef.  -- 0.41 0.33
Frontal Area m^2 2.6 2
Rolling Resistance Coef.  -- 0.012 0.009
Wheel Radius (effective) m 0.343 0.314
Vehicle Range mi (km) 300 (483) 300 (483)

Performance

Assumption Description Units
mid-size 

SUV
mid-size 

Car
0-60 mph (0-97 kph) s <=11.2 <=12
40-60 mph (64-97 kph) s <=4.4 <=5.3
0-85 mph (0-137 kph) s <=20.0 <=23.4
Grade @ 65mph (105kph) for 
20min. @ Curb Mass + 408kg % >=6.5 >=6.5
Drive Cycle Tolerance mph (kph) <=2 (3.2) <=2 (3.2)
SOC Balancing % <=0.5% <=0.5%
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Typical Fuel Cell and Hydrogen Storage 
Systems Assumptions

• Fuel Cell
– Should be sized to provide at least top speed and grade 

performance.
– Must have 1- or 3-s transient response time for 10% to 90% 

power.
– Should reach maximum rated power in 15 s for cold start from 

20°C and 30 s for cold start from –20°C ambient temperatures.
– System efficiency of 60% at maximum and 50% at rated peak 

power (DOE Technical Targets) .
– Specific energy of 400-600 W/kg.

• Hydrogen Storage
– Pure compressed hydrogen.

Assumption Description Units 2005 2010
H2 Storage Energy Density kWh/L 1.2 1.5
H2 Storage Specific Energy kWh/kg 1.5 2
H2 Storage Cost $/kWh 6 4
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Typical Energy Storage System 
Assumptions

Assumption Description Units PbA NiMH Li-Ion
Ultra-

capacitor
Energy Storage Energy Density Wh/L 75 100 190 5
Energy Storage Specific Energy Wh/kg 35 55 100 4
Energy Storage Energy Density W/L 1600 2000 2800 4500
Energy Storage Specific Energy W/kg 550 1000 1300 3500
Energy Storage Cost (power) $/kW $10.00 $40.00 $60.00 $15.00
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Regen Capture Is the Primary Contribution of 
EES to Fuel Cell Vehicle Efficiency
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Maximum Fuel Savings Potential from 
Regen Energy Use

• Assumption: fuel cell power output is limited such that 
remaining peaks consume all regen energy.

• Assumed 100% efficiency for recovering regen 
energy.
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Fuel Economy Depends on Driving Cycle and 
Degree of Hybridization
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Key Benefit of Hybridization Is Fuel 
Economy Increase for Urban Cycles
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Typical System Efficiency Characteristics 
from Fuel Cell Model

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Percentage of Peak Net Power (%)

Fu
el

 C
el

l S
ys

te
m

 E
ffi

ci
en

cy
 (%

)

Default Scenario @358K

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

Ancillary system 

Fuel cell stack (polarization curve)



18 9th Ulm Electrochemical Talks

Fuel Cell System Efficiency Variability Could 
Affect FC-ESS Hybridization Outcome

Energy storage system 
characteristics will 
depend on the fuel cell 
system characteristics

Scaled Some of Analysis

NREL used a modified version of the GCtool hydrogen data in the plot. The 
modification is that the efficiency curve was scaled to provide an efficiency of 60% at 
25% peak power (12.5kW). The peak efficiency was 62%-63%.
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Advantages of Downsizing Tied to Fuel Cell 
Efficiency Characteristics
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Drive Cycle Power Output Histogram 
Helps Explain Hybridization Benefits
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Benefit of Downsizing Fuel Cell as a 
Function of Peak Efficiency Position
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Potential Active Roles for 
Supplementing Fuel Cell Operation

Curve 2 - Peak Efficiency @ 25% Full Power
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Concluding Observations 
• Vehicle performance specifications can significantly 

influence ESS requirements.
• Fuel cell operating characteristics can significantly 

influence ESS requirements.
• Regen capture is the key contribution of the ESS to fuel 

cell vehicle efficiency. 
• A key benefit of hybridization is an increase in fuel 

economy for urban cycles.
• Maximizing fuel economy depends on drive cycles and 

fuel cell system characteristics (efficiency curve).
• Ultracapacitors can recapture a significant portion of the 

regen energy and thus improve fuel economy. However, 
because of their limited energy storage capability, they 
provide less potential for fuel cell system downsizing.
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