
  

 

  

 

 
 

 

Model-Based Electrochemical Estimation of Lithium-Ion Batteries 
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Abstract—A linear Kalman filter based on a reduced order 

electrochemical model is designed to estimate internal battery 

potentials, concentration gradients, and state of charge (SOC) 

from external current and voltage measurements. The estimates 

are compared with results from an experimentally validated 

one-dimensional nonlinear finite volume model of a 6 Ah hybrid 

electric vehicle battery.  The linear filter gives, to within ~2%, 

performance in the 30%-70% SOC range, except in the case of 

severe current pulses that draw electrode surface 

concentrations to near saturation and depletion; however, the 

estimates recover as concentration gradients relax.  With 4 to 7 

states, the filter has low order comparable to empirical 

equivalent circuit models but provides estimates of the battery’s 

internal electrochemical state. 

I. INTRODUCTION 

MODEL-BASED battery monitoring algorithms enable 

efficient and reliable integration of batteries into 

hybrid electric vehicle (HEV) powertrains. Examples 

include the generalized recursive least squares algorithm of 

Verbrugge and Koch [1] and the extended Kalman filter 

algorithm of Plett [2].  Both algorithms use an assumed 

empirical battery model to predict state of charge (SOC) and 

maximum pulse power available within some fixed, 

predetermined voltage limits.  In pulsed-power applications, 

fixed current/voltage limits can be overly conservative, 

particularly for short-duration, high-rate current pulses that 

give rise to large ohmic voltage perturbations [3].  In the 

dynamic HEV environment, it is desirable to be able to 

predict the electrochemical state of the battery—e.g., 

internal chemical concentrations and potentials—to more 

accurately estimate the power or energy available from the 

battery and avoid damage. 

For lithium-ion (Li-ion) batteries, the one-dimensional 

model of Doyle, Fuller, and Newman [4], [5] derived from 

porous electrode and concentrated solution theory captures 
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relevant solid-state and electrolyte diffusion dynamics and 

accurately predicts current/voltage response. 

Derivation of a dynamic electrochemical model suitable 

for battery state estimation is complicated, however, by the 

infinite dimensionality of the underlying partial differential 

equation (PDE) system.  Using spatially discretized PDEs, 

distributed parameter-type estimation algorithms have been 

developed for the lead-acid battery [6] and the nickel-metal

hydride battery [7], although with high order (30-100 states) 

in comparison to equivalent circuit model-based algorithms 

(2-5 states). Recently, we used a model order reduction 

technique to derive a low-order Li-ion battery model in state 

variable form [8], [9] directly from the physical governing 

equations [4], [5].  Here, we employ that model in a linear 

state estimation algorithm and validate its internal estimates 

against an experimentally validated 313
th

 order nonlinear 

finite-volume model of a 6 Ah HEV battery [10]. 

II. MODEL AND FILTER 

A schematic of the 1D battery model is shown in Fig. 1. 

During discharge, Li ions diffuse to the surface of carbon 

particles in the negative electrode, where they react and 

transfer to an electrolyte solution.  The positively charged 

ions travel through the electrolyte solution via diffusion and 

migration, where they again react and diffuse into metal 

oxide active material particles.  Electrons that are produced 

in the negative electrode reaction and consumed in the 

positive electrode reaction are blocked by the electronically 

insulating separator and instead must travel through an 

external circuit. 

A. Infinite-Dimensional Time Model 

The electrochemical model parameters are defined in Table 

1. The 1D electrochemical model [4], [5] consists of four 

PDEs describing the conservation of Li in the solid phase 

(written for a spherical active material particle with reaction 

occurring at the surface), 

wcs Ds w § 2 wcs · (1) 
2 

¨ r ¸
wt r wr © wr ¹
 
wc
 � j Li 

, (2)D s 

s wr a F 
r R s 
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the conservation of Li in the electrolyte phase, 

ow�H c � w § w · 1 � t e e � Li (3)¨De ce ¸ � j 
wt wx © wx ¹ F 
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Fig. 1.  Schematic of Li-ion battery during discharge. 
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Fig. 2.  Schematic of potential gradients across 1D Li-ion battery 

during discharge. 
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the conservation of charge (e 
-
) in the solid phase (active 

material particle/binder matrix),

w § w · Li (5)¨V I ¸ � j  0 
wx © wx

s 
¹ 

wI wI I (t)s s (6)�V V  , 
wx wx A 

x 0 x L 

and the conservation of charge in the electrolyte phase, 

w § w · w § w ln c · 
¨N I e ¸ � ¨N D

e ¸ � j Li 0 (7) 
wx © wx ¹ wx © wx ¹ 
wI wI . (8)e  e 0
 
wx wx
 

x 0 x L 

The four PDEs are coupled by the Butler-Volmer equation 

describing the reaction current at the solid/electrolyte 

interface, 

TABLE I
 

ELECTROCHEMICAL MODEL PARAMETERS
 

Symbol Description Units 

2as electrode specific surface area cm /cm3 

2A electrode plate area cm
 

c concentration of Li in a phase mol/cm3
 

2D diffusion coefficient of Li cm /s 

F Faraday’s constant 96487 A s/mol 

I current applied at battery terminals A 

io exchange current density of an A/cm 

electrode reaction 

jLi reaction current A/cm3 

Q battery capacity A s 

R universal gas constant 8.3143 J/mol K 
2Rct linearized charge transfer resistance � cm
 

Rs radius of active material particles cm
 

t� 
o transference number of Li+ with
 

respect to velocity of solvent
 

U equilibrium potential of an electrode V
 

reaction
 

V voltage at battery terminals V
 

H volume fraction of a phase
 

K overpotential of an electrode reaction V
 

N Li+ conductivity of electrolyte 1/� cm
 

ND Li+ diffusional conductivity of A/cm
 

electrolyte
 

T electrode stoichiometry
 
-V e  conductivity of electrode solid 1/� cm
 

matrix
 

I phase potential V
 

Subscripts 

e electrolyte phase
 

s solid phase
 

s,e solid phase, at electrolyte interface
 

s-e solid/electrolyte phase difference
 

max maximum in phase
 

- negative electrode region
 

sep separator region
 

+ positive electrode region
 

0% 0% state of charge reference
 

100% 100% state of charge reference
 

 ªD F º ª D F º½Li a cj  a i ®exp K» � exp � K ¾ , (9) 
s o « « »
¯ ¬ RT ¼ ¬ RT ¼¿ 

as a function of overpotential, 

K I s �I e �U . (10) 

In (10), note that the phase potential difference must 

overcome an electrode equilibrium potential U=U(cs,e) in 

order to drive the reaction current in (9). Voltage measured 

at the battery terminals, 
fV (t) I (L, t) �I (0, t) � R I (t) , (11)

s s A 

includes an empirical contact resistance between the 

electrode and current collector. 

Fig. 2 provides a schematic of potential gradients internal 

to the 1D battery during discharge.  Under sustained 

discharge, I < 0, all gradients reduce the electromotive force 

V(t) of the battery.  At complete equilibrium (which may take 



             

    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hours to achieve following even a brief discharge or charge 

event), K 'I 'c 'c 0 , and (11) reduces to the so
e s e 

called open-circuit voltage, 

VOC U � (cs,avg � ) �U � (cs,avg � ) , (12) 

Which, alternatively, can be expressed solely as a function of 

battery SOC using conservation relationships. 

Lumping each electrode and applying (solid-phase) Li and 

charge conservation provides a linear relationship between 

the negative and positive electrode-averaged concentrations, 

dc	 dc s ,avg� s,avg�
I (t) �G H AF �G H AF , (13)

� s� � s�
dt	 dt 

valid at all times.  For estimation purposes, the electrode-


averaged concentrations are normalized and written as a 


linear function of SOC,
 

c (t) >SOC(t) �T �T ��T @c , (14)

s,avg 100% 0% 0% s ,max 

where ș0% and ș100% are the reference stoichiometries of each 

electrode at 0% and 100% SOC, respectively.  Note that, by 

substituting the time derivative of (14) into (13), one 

recovers the ampere-hour integration-type definition of SOC 

more commonly found in the estimation literature, 

d (SOC)
I (t) � Q 

1 ,	 (15) 
dt 

where Q GH AFc T �T is the usable capacity of 
s s,max 100% 0% 

each electrode, equivalent to the battery capacity. 

B. Infinite-Dimensional Impedance Model 

As the first step in model order reduction [11], transfer 

function/matrix solutions are derived with current as input 

and electrochemical field variables as output.  Solutions for 

individual field variables are then combined to predict 

battery voltage. 

The solid-state diffusion impedance of a spherical 

electrode active material particle is [12] 

cs ,e (s)	 1 § Rs 
·ª tanh� �E º ¨ ¸ , 	(16) 

Li ¨ ¸« »
j (s) as F © Ds ¹¬ tanh� �E � E ¼ 

where E R s / D , and the overbars indicate Laplace 
s s 

transformed variables.  Dimensionless impedance v(s) of an 

electrode is [13] 
1 

1 § R wU § c (s) ··
� 

s,e1 1 ctQ (s) G �N � V �2 

¨̈ � ¨̈ Li ¸̧ ¸̧ 
2 

. (17) 
a wc © j (s) ¹© s s ¹ 

In the present work, equilibrium potential U(cs,e) and charge 

transfer resistance Rct § Ș / jLi
 are both linearized at the 50% 

SOC rest condition. 

We define the dimensionless electrode position z = x / į, 
where z = 0 is the current collector interface and z = 1 is the 

separator interface.  For current I(t) applied at the battery 

terminals, Smith, Rahn, and Wang [8] derive 1D 

transcendental transfer functions for reaction rate jLi 
, 

j Li 
(z, s)	 

1 1 
Q (s) 

GA N �V (18)I (s) sinhQ (s)
 

u N > Q � � `
^ cosh v(s)�z �1�@�V cosh> (s) z @ , 

overpotential,
 

K (z, s) R j Li (z, s)
ct , (19) 
I (s) as I (s) 

electrode bulk-to-surface concentration difference ¨cs,e = cs,e 

– cs,avg, 
Li'cs,e (z, s) cs,e (s) j (z, s) 

� 
cs,avg (s) 

, (20) 
I (s) j Li (s) I (s) I (s) 

and electrode bulk concentration cs,avg, 

c (s)s ,avg 1 1 .	 (21)� 
I (s) GAH s F s 

Equations (18)-(21) are written for the negative electrode 

and are derived under the assumption of uniform electrolyte 

concentration.  For the positive electrode, one can multiply 

the right-hand sides of (18)-(21) by –1. 

Analytical solutions for electrolyte concentration and 

potential are unduly cumbersome. Spatial discretization of 

(3) and (4) followed by Laplace transformation yields the 

transfer matrix 

c (s) j
Li (s)e �1 . 	(22)(K � sM ) F c c c e e eI (s) I (s) 

In (22), Ki, Mi and Fi are the stiffness, mass, and forcing 

matrices defined by the finite element method, and ce (s)  and 

jLi (s) are n x 1 vectors representing field variables ce (x, s) 

j Liand (x, s)  at discrete node points xi. Similar treatment of 

(7) and (8) yields the transfer matrix 

'ĳ (s) § c (s) jLi (s) · e �1 e , (23)(K ) ¨� K N � F ¸
I ¨ D I e ¸I (s) e 
N

© I e I (s) I (s) ¹ 
where the first vector element representing I e (0, s) is fixed at 

zero. 

The complete current/voltage impedance model is 

V (s) wU wU 1
1 � 1 � 1� � �

AF w G H G Hcs� � s� wcs� � s�I (s)	 s 

wU�	 j'c (0, s) �K (0, s) �'I
Li 

(0, s)wc s,e	 e�� s� 

(24)
I (s) 

wU	 j� 
wc �

'cs,e (L, s) �K (L, s) � 'I e� 
Li 

(L, s)
� s 

I (s) 

ce 'I e (L, s) Rf� � 
I (s) A 

with separate terms related to SOC dynamics, negative 

electrode solid diffusion dynamics, positive electrode solid 

diffusion dynamics, electrolyte diffusion dynamics, and 

contact resistance static impedance, respectively. 

C. Reduced-Order State Variable Realization 

Following the procedure in [11], given full order transfer 

matrix y(s) / u (s) , the reduced-order transfer matrix is 

defined as 

y *(s) n r sk ,	 (25)z �¦ �u (s)	 k 1 s pk 



 

 
  

 

 

  

  

 

 
 

 

 with steady-state vector z obtained from the full-order model 

as z lim y(s) / u(s) , and  poles pk and residue vectors rk 
so0 

numerically generated by minimizing the cost function 

2
* 

m n 

Re �y i ( jZ k ) � y i ( jZ k )�J ¦ ¦  (26)
k 1 i 1 

2
*� Im �y i ( jZ k ) � y i ( jZ k )�

across the frequency range Z � [0, 2Sfc], where fc is the 

model cutoff frequency.  The reduced-order single-input, 

multiple-output (SIMO) state variable model, 

x� A x � Bu 
, (27) 

y 
* 

Cx � Du � y0 

is constructed with 
T

A diag >O1 � O n @, B >1�1@ , 

n (28)
ª º 

C >r1O1 � r n O n @, D z �¦ rk ,« »
¬ k 1 ¼ 

eigenvalues pk = Ȝk, and static constant y0 giving output y 
* 

the proper value at the linearization point.  In the following, 

we drop the * symbol from the reduced model for brevity. 

The model order reduction procedure requires transfer 

functions to have finite steady state, a condition satisfied by 

each of the infinite-dimensional diffusion terms of the 

voltage/current model, i.e., terms two through five of (24). 

The first term of (24), related to SOC, has a single 

eigenvalue at the origin and is not reduced.  Grouping bulk 

solid concentration dynamics further into the single SOC 

term is necessary to make the linear model observable. 

In [8], the voltage/current state variable model was 

constructed by separately fitting transfer functions for 

negative electrode solid diffusion, positive electrode solid 

diffusion, and electrolyte diffusion dynamics giving model 
T  T  T T 

states x = [SOC x- x+  xe ] . In cases in which eigenvalues 

for the negative and positive electrode states are closely 

matched, however, we find that positive and negative 

electrode diffusion dynamics may share the same set of 

eigenvalues, Ȝ±, with little loss in accuracy.  Taking this 

approach, model states are x = [SOC x±
 T

 xe
 T

]
T
 in the present 

work. 

D. Kalman Filter 

The standard Kalman filter formulation assumes the plant 

contains process noise w and measurement noise v in the 

form 

x� Ax � Bu �Gw 
(29) 

y Cx � Du � y0 � v . 

State estimates x̂  are calculated from sensor measurements 

u(t) and y(t) as 

x̂� Ax̂ � Bu � L( y � y0 �Cx̂ � Du) . (30) 

The optimal filter gain L is precalculated offline as a 

function of process noise covariance Qw, measurement noise 

covariance Qv, and process noise input matrix G to minimize 

the steady-state error covariance 

P lim E�[x � x̂] [x � x̂]T �. (31) 
tof 

III. RESULTS AND DISCUSSION 

In previous work, we identified and validated a 313
th

 order 

nonlinear finite-volume model solving (1)-(11) against 

constant current, transient pulse current, and driving cycle 

experimental data from a 6 Ah Li-ion HEV battery [10]. In 

this work, we derive the Kalman filter based on the reduced-

order SIMO model (27) and simulate the response using the 

finite-volume model (see [10] for model parameters). 

For the reduced-order model, we use 5 states to describe 

positive and negative electrode solid-state concentration 

gradient dynamics and 1 state to describe electrolyte 

concentration gradient dynamics.  This 5Ds±/1De state 

variable model, with 0 to 10 Hz bandwidth, has eigenvalues 

ȜSOC = 0, 

Ȝ± = -[0.00704, 0.0606, 0.613, 6.10, 63.1], 

Ȝe = -0.0992 rad/s. 

Sizing the filter gain L requires selection of Qw, Qv, and 

G. To simplify this choice, we interpret w as current sensor 

noise and adjust its influence on individual states with G. 

With this interpretation, Qw is current sensor noise 

covariance and Qv is voltage sensor noise covariance; here, 

Qw = (2A)
2
 and Qv = (0.025V)

2
. In theory, the relative 

influence of process noise on individual states may be 

adjusted with individual elements of G. In the present 

application, however, we find that filter eigenvalues 

(eigenvalues of A-LC) deviate very little from model 

eigenvalues (eigenvalues of A) irrespective of Qw, Qv, and G 

with the exception of ȜSOC. The SOC eigenvalue, located at 

the origin in the open-loop model, takes on negative real 

values in the closed-loop filter.  Attempts to move other filter 

eigenvalues to slightly faster locations (as little 1.01·Ȝ±) 

through pole placement causes state estimates to become 

overly sensitive to sensor noise. 

Fig. 3 compares filter results to data generated by the 

nonlinear finite-volume model simulating a Federal Urban 

Driving Schedule (FUDS) cycle for a hybrid electric mid-

sized passenger car [10] at 50% SOC. The cycle consists of 

short-duration, low-to-medium-rate discharge and charge 

current pulses for which battery response is largely linear. 

The sign convention for battery current is I > 0 during 

discharge and I < 0 during charge. The current profile, 

Fig. 3a, is input to the nonlinear finite volume model to 

simulate the battery’s voltage response, Fig. 3b. These 

current and voltage “measurements” are played through the 

filter to generate estimates shown in Fig. 3c-e. Filter states 

are initialized at x̂(0) = [0.2 0 … 0] 
T
, i.e., 20% SOC with 

zero solid and electrolyte phase concentration gradients.  The 

filter gain is sized with G = [0.005 … 0.005], giving 20-30 

second convergence to proper SOC (Fig. 3c).  Faster 

converging filters yield noisy estimates when sensor noise is 

included in the simulation.  To simplify discussion, Fig. 3d 

and Fig. 3e present solid phase surface concentration 



 

Fig. 3. FUDS driving cycle simulation:  Nonlinear finite-volume 

model with 50% SOC initial condition (•) and linear filter with 20% 

SOC initial condition (-);  (a) current profile, (b) voltage response, (c) 

SOC, (d) negative electrode average surface stoichiometry, and (e) 

positive electrode average surface stoichiometry. 

Fig. 4. Filter error for FUDS driving cycle simulation using filters of 

various order:  5Ds± /0De (6 state) filter (•), 4Ds±/0De (5 state) filter 

(-), and 3Ds±/0De (4 state) filter (--). The SOC initial conditions: 50% 

and 20%, respectively, for a nonlinear finite-volume model and linear 

filters. 

distributions, cs,e(x,t), as electrode-averaged surface 

stoichiometries, 
G 

1 . (32)T s,e (t) G c ³ cs ,e (x, t) dx 
s ,max 

0 

Surface stoichiometries rise and fall much faster than SOC as 

they are more closely coupled to recent charge/discharge 

Fig. 5.  Ten-second, 60 A pulse discharge profile initiated from 100% 

SOC: (a) current profile; (b) voltage response of nonlinear finite-

volume model; (c-e) filter errors:  5Ds± /1De (7 state) filter (•), 5Ds± 

/0De (6 state) filter (-), and 3Ds± /0De (4 state) filter (--).  Horizontal 

dotted lines denote ±5% SOC error threshold in (c) and ±3% surface 

stoichiometry error thresholds in (d) and (e). 

history.  Overshoot in SOC and surface stoichiometry can 

occur when filter states x̂ r  and/or x̂ 
e 
 are initialized to 

nonzero values but convergence is still obtained in 20-30 

seconds. 

In many situations, particularly for input currents with a 

negligible DC component such as the FUDS cycle current 

profile shown in Fig. 3a, lower order filters provide good 

performance. Electrolyte diffusion dynamics (the fourth term 

of (24)), impacting the voltage response of the present 

battery only for sustained medium-to-high-rate currents, may 

be dropped from the filter, and electrode transcendental 

transfer functions may be fit with 3
rd

 and 4
th

 order rational 

transfer functions rather than 5
th

 order. Fig. 4 compares SOC 

and electrode surface stoichiometry errors for filters 

constructed from 5Ds±/0De, 4Ds±/0De, and 3Ds±/0De models. 

The 4D±/0De model has eigenvalues 

ȜSOC = 0, Ȝ± = -[0.00828, 0.0127, 2.31, 41.5] rad/s, 

and the 3Ds±/0De model has eigenvalues 

ȜSOC = 0, Ȝ± = -[0.0116, 0.581, 27.3] rad/s. 

Very little difference is evident among the three filters’ 

performance on the FUDS cycle. 

In Fig. 5, the battery is discharged from 100% SOC via 60 

A pulses of 10 s duration with 10 s of rest between each 

pulse. The discharge may be interpreted as a 30 A constant 

current discharge superposed with ±30 A perturbations. The 

DC component of the current profile causes an electrolyte 

concentration gradient to be established after approximately 

20 s.  Comparison of the 5Ds±/1De and the 5Ds±/0De filters 



  

 

   

  

  

  

   

  

  

 

  

  

  

  

 

 

   

  

   

  

  

   

  

 

  

 

 

 

 

 

    

 

  

  

  

     

  

 

 

  

  

 

    

   

shows that an additional 1%-2% in SOC error and 1% in șs,e 

error is introduced by dropping electrolyte phase dynamics 

from the filter. Reducing the electrode model from 5 to 3 

states introduces an additional 1% error in șs,e- but affects 

șs,e+ and SOC estimates very little. 

The discharge presented in Fig. 5 exhibits significant 

nonlinearities at the beginning (t < 75s) and the end of 

discharge (t > 450s), where the linear filter performs poorly. 

Equilibrium potentials U+ and U- are functions of surface 

stoichiometry or concentration and represent the dominant 

nonlinearity of the battery. The linear filter performs well if 

șs,e- and șs,e+ remain within approximately ±0.15 of their 50% 

SOC linearization points.  Note that surface stoichiometry, 

and thus equilibrium potential, will be a function of SOC 

only at rest, in the absence of solid-state concentration 

gradients. At rest, the linear filter is accurate in the interval 

27% < SOC < 72%.  Under discharge or charge, however, 

surface dynamics can significantly lead bulk dynamics (i.e., 

SOC) and for the particular pulse discharge case shown in 

Fig. 4, the filter performs well from 92% SOC  (t = 75 s) to 

49% SOC (t = 450 s). 

IV. CONCLUSIONS 

This paper shows how filters with low order (4 to 7 states) 

can be designed from a fundamental Li-ion battery model to 

estimate the internal electrochemical state of a battery from 

external current and voltage measurements.  The linear filter, 

based on a 50% SOC linearized model, performs well if 

electrode surface stoichiometries stay within rest values 

corresponding to 30% to 70% SOC.  During discharge or 

charge, however, electrode surface dynamics can 

significantly lead bulk (SOC) dynamics, and a severe 

discharge/charge event may cause a nonlinear voltage 

response even with SOC near the 50% linearization point. 

Following such an event, the linear filter recovers as 

electrode solid-state concentration gradients relax. 

Unlike previous electrochemical models formulated using 

spatial discretization techniques, the present reduced-order 

model enjoys a computational efficiency comparable to that 

of equivalent circuit models, a requirement for practical 

implementation of on-board embedded controllers. Future 

work should address nonlinear model identification and 

formulate robust and/or adaptive filters capable of sensing 

and accounting for battery degradation. 
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