

Innovation for Our Energy Future

EDLC Modeling and Integration for Hybrid Electric Vehicles

Matthew Zolot

Contributors: Tony Markel, Sam Sprik, Ken Kelly, Terry Hendricks, and Ahmad Pesaran

Presented to

"The 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices" Deerfield Beach, Florida December 6-8, 2004

Objectives of This Presentation

- Update on NREL's EDLC modeling and EDLC automated analysis program
- Update on EDLC roles in hybrid vehicles
- Overview of Heavy Hybrid EDLC initiatives

Outline

EDLC activities overview

- Modeling Review
 - The New Manual's Modeling Implications
 - VBA Analysis Spreadsheet
 - Electrochemical Impedance Spectroscopy
- Light Duty Hybridization Analyses
 - Fuel Cell Efficiency Curve
 - Specific Fuel Cell ESS Requirements
- Heavy Hybrid EDLC Efforts

Equivalent Circuit Capacitor Model

- C mapped as a function of temperature & current
 - R mapped as a function of temperature & current

Additional Attributes

- Coulombic efficiency accounted for
- Thermal model: temperature rise predictions & thermostat temperature control
- Maximum power limitations
- Series and Parallel configurations

Most of NREL's Model Data is Generated from Standard Test Characterizations

DOE/NE-ID-11173 Revision 0 September 21, 2004

There are Multiple Calculation Techniques used for obtaining Modeling Characteristics

Automated Analysis Program

Objective:

It is anticipated that the Excel VBA program will provide a simple, standard, user-friendly, and powerful tool to help industry perform automated test analyses and characterization for EDLC modeling

1st Screen – Choose Test to Analyze

M	icroso	oft Excel -	EDLC_A	nalyses_Program.	xls																						
I File Edit View Insert Format Iools Data Window RCS Help Adobe PDF																											
	产 [884	5 🗟 🖑	/ 👗 🖻 🛍 🚿	t lo	• Ca -	. 🚷 :	Σ <i>f</i> * 🛃		11 🛷	100%	- 2 .	Arial			•	· 10	B	I	U	F T		3	%	•.0 •.00	.00	
1	1	5																									
	T47	-	=																								
	Α	В	С	D	Е		F	G	H			J		K		L		М		Ν	()	F)	Q		R
1	Г																										
3																											
4			P N	KEL Nat	ion	al R	ene	wable	e En	erg	y La	bora	atory	У													
5	ŀ																									-	
7									_												INT O	E.E.					
8							F	ree	do	m	CA	R								7	NAME AND ADDRESS OF						
9									40					~							17		3				
11																							7				
12	Ultracapacitor Test Manual Modeling/Analyses Program																										
13																											
14																											
15	ŀ	Step 1	Choose	e Test-Type to A	nalyz	e																					
17			Refe	rence Capacitγ		Const	ant-Pow	er Dschg		Lea	akage-C	urrent		Ηy	/brid F	^o ulse	Powe	r Ch		The	rmal Pe	erform	ance				
18					-	~		~		-	16.02				I		1.2		[-	-						
20			0	nstant-Current		Cons	tant-Po	wer Ong		3	elt-Disci	narge			Coll	d Cra	inking			E	nergy E	morer	псү				
21																											
22	L																										
24																											
25																											
26																											
28																											
29																											
31																											

2nd Screen – Choosing Data

🔀 Microsoft Excel - EDLC_Analyses_Program.xls	_ 8 ×
Bile Edit View Insert Format Iools Data Window BCS Help Adobe PDF	_ 8 ×
D 🖆 🖬 🕼 🚭 🖪 🖤 ※ 階 電 ダ ロ・ロ・ 🍓 Σ た 斜 斜 🏨 🚜 100% 🕨 및 🖕 Anial 💿 ・ 10 ・ B ズ リ 吉 吉 垣 🕏 % , 33 ぷ 幸 幸 田・ 🔕 ・ 4	<u> </u>
ABCDEFGHIJKLMNOPQRS	
2	
A Stional Renewable Energy Laboratory	
12 Ultracapacitor Test Manual Modeling/Analyses Program	
13	
14 Convention: Discharge Current (-) Negative, Charge Current (+) Positive	
15 Step 1 Select file for analysis at: °C	_
17 Choose Constant Current File 07232004 BCap77523 CCTestA2at30C001.xls	
18	
19 Back to "Main" Return to lest Selector Sheet	
21	
22 Step 2 Select data columns:	
23 Select Time (s) Data Cell Value Select Current (A) Data Cell Value Select Voltage (V) Data Cell Value	
Z4 Select Beginning Time B\$43203 72.000418 Select Current Column \$F\$43203 -0.161987 Select Voltage Column \$E\$43203 2.490959	
26 B\$50403 84.000418 F\$50403 -0.192505 F\$50403 2.479744	
27 Ending Time: Ending Current: Ending Voltage: Ending Voltage:	
29 Select Different Ending Time Inits	
30 21 Star 2 Date Analysis Facilitation	
31 Step 5 Data Analyses reeduats: 32	
33 Plot Results are located in file specified in step 1,	
34 and in tab: ResultsPlot1	
36	
37	
38	
40	
41	
42 43	
44	
45	
40 47	-
	DI

tory

3rd Screen – Analyzing Data (Self Documenting)

4th Screen – Analysis Results

Kicrosoft Excel - 07232004_BCap77523_CCTestA2at30C001_ANALYZED.xls													
Eile Edit View Insert Format Tools Data Window RCS Help Adobe PDF													
🗅	🖻 🖬 🔒	• 10 • B I	U										
	A1 •												
	A	B	С	D	E	F	G						
1	t (s)	I (A)	V (V)	Dischg Capacitance (F)	Chg Capacitance (F)	Dischg Resistance (mOhm)	Chg Resistance (mOhm)						
2	156.825	-0.116211	2.504272										
3	849.825	-5.197388	1.252403										
4	859.92504	-0.192505	1.255875										
5	1541.925	4.842896	2.492867										
6	1552.02504	-0.13147	2.488976										
7				2897.201017	2649.110057	0.66524498	0.812357003						
8	1552.02504	-0.13147	2.488976										
9	2233.52502	-5.258423	1.253815										
10	2243.62506	-0.314575	1.258049										
11	2925.92502	4.827637	2.495689										
12	2935.92504	-0.161987	2.490807										
13				2887.076864	2651.232368	0.811943962	1.019172034						
14													
15													
16													
17													
18													
46													
47													
48													
I¶ Î∎	Chart1 / Chart1 (2) / Chart2 / Chart2 (2) / BCap77523 CCTestA2at30C001 / ResultsPlot1 Calculated Results												
D <u>r</u> a	w• 🗟 🙆	A <u>u</u> toShapes	• \	- 🖸 🛃 🖪 🔌 -	<u>⊿</u> • <u>A</u> • ≡ ≡ ≣	🛱 🛄 🧊 🔎 😱 🖕 🖕 Security	2 🛠 🔟 🙍 🗸 🔛	.					

Electrochemical Impedance Spectroscopy (EIS) Applications

- Material Characterization & Modeling
- Battery SOC predictions
- Battery SOH predictions

Proposed:

EDLC modeling

Rigorous Test Procedures are Required for Device-Level Modeling with EIS Data

- More rigorous test procedure details are to be included in the ulletnew testing manual:
 - (1) Insure small AC amplitude injection signal.
 - (2) Use true four lead measurement.
 - (3) A low resistance, consistent, & repeatable connection must be made between the four leads and the cell under test.
 - (4) Use equipment with adequate current drive rating.
 - (5) Specify consistent and stable SOC(s) at which to perform readings.
 - (6) Wait sufficient time to allow for device to equilibrate after charging to said SOC.
 - (7) Connect "reference" leads directly to the cell under test (not "working" and "counter" leads) - If connectors don't allow same location of connection point.

More Rigorous Definition of Details for **EIS Analyses**

The CNLS fitting method is not as straightforward as would be desired for a procedure outlined in a manual. It involves:

- (1) Evaluate quality of lab data for glitches/anomalies that will prevent proper fitting.
- (2) Estimate initial values from which to begin the fitting process.
- (3) Fix some values (necessary for high order circuits, like the 5stage ladder) & iterate through by fitting different circuit sections.
- (4) Adjust weighting or the weighting method used between real & imaginary impedance values (depending on fitting software).
- (5) Simulate the model for comparison to the data.

Many steps need: (A) researchers' heuristic feedback, (B) measurements iterations to obtain a working circuit diagram. Additionally, it may be difficult to provide a consistent basis by which fittings can be compared from different sources.

Modeling Summary

- We are looking for EDLC community feedback on:
 - Level of interest and those interested in Beta testing the automated analysis program for the FreedomCAR EDLC test manual

 Level of interest for EIS based system modeling and feedback on consistent techniques to incorporate EIS into standardized device testing/modeling.

Outline

EDLC activities overview

- Modeling Review
 - The New Manual's Modeling Implications
 - VBA Analysis Spreadsheet
 - Electrochemical Impedance Spectroscopy
- Light Duty Hybridization Analyses
 - Fuel Cell Efficiency Curve
 - Specific Fuel Cell ESS Requirements
- Heavy Hybrid EDLC Efforts

There are Various Vehicle Applications/Needs for Energy Storage

Addressing requirements of energy storage in vehicles with different strategies

Variability in Fuel Cell System Efficiency Will Affect FC-ES Hybridization, so System Design is Key

Fuel Economy is Affected by the Position of FC Peak Efficiency

Drive Cycle Power Output Histogram Helps Explain 10% Peak Power Benefits

- 10% peak efficiency FC has
 the highest fuel economy
 because its peak efficiency
 is better aligned with the
 power requirements.
 - Little fuel economy difference over US06 cycle.
 - wider power distribution
 - similar efficiency at Pavg

Vehicle with fuel cell only

The Benefit of Downsizing Tied to Fuel Cell Efficiency Characteristics

What kind of Energy Storage is Required for Minimum Supplementation of a Downsized FC?

Additional Fuel Cell Hybridization Work to be presented:

Objective: Evaluate Energy Storage System (ESS) Requirements for a Fuel Cell Vehicle with an Aggressively controlled ESS

Using 2010+ Vehicle and Fuel Cell Assumptions

Light-Duty Hybridization Summary

- Downsizing the fuel cell in a vehicle provides improvement in:
 - Fuel economy, especially for FC systems with peak efficiency as a high percentage of net power
 - Fuel cell costs
 - Has little to no affect on ESS sizing [in minimal control case].

Outline

EDLC activities overview

- Modeling Review
 - The New Manual's Modeling Implications
 - VBA Analysis Spreadsheet
 - Electrochemical Impedance Spectroscopy
- Light Duty Hybridization Analyses
 - Fuel Cell Efficiency Curve
 - Specific Fuel Cell ESS Requirements
- Heavy Hybrid EDLC Efforts

DOE's Advanced Heavy Hybrid Propulsion Systems Program

Program Goals:

 Next generation technologies for commercially viable heavy-hybrid vehicles

<u>100% Increase in fuel efficiency (target</u>

Meet EPA's 2007 emissions standards

Phase I - Underway

- 3-year Research & Development Effort (FY 03-05)
- 50%-50% Government / Industry Cost-Share
- Design, Develop, Characterize, and Show Feasibility of Energy &
- Targeting Wide Range of Class 3 Class 8 He

EDLC's may be Well Suited to some Heavy Vehicle Applications

Demanding Vehicle Requirements:

- 8 to 12 hours of continuous stop-and-go duty cycle
- 34,500 lb vehicle, 17,000 lb payload
- Fully loaded highway speeds / grades
- Much higher traction / regen power requirements
- Durability, reliability, and cost are critical fleet concerns

AHHPS EDLC System Development Activities

Vehicle Systems Modeling (FY04)

- Fuel economy prediction, system sensitivity, optimization

Technology Characterization (FY04)

- Review / down-select of available technologies

Reliability testing (FY05)

- Bench testing of 3-4 selected technologies

Thermal management (FY04 – FY05)

- Conjugate thermal / flow analysis of module thermal management

Model validation (FY04 - FY05)

- Module and thermal management system bench tests
- Chassis dynamometer and field testing of vehicle

Acknowledgements

- Sponsored by U.S. Department of Energy's Office of FreedomCAR and Vehicle Technologies.
 - Energy Storage Program
 - Vehicle Systems Program
- We appreciate the support and technical guidance from USABC/FreedomCAR ES Technical Team
 - Harshad Tataria
 - Cyrus Ashtiani
 - Franco Leonardi

www.ctts.nrel.gov/BTM www.ctts.nrel.gov/analysis

