Thermal Characterization of Selected EV and HEV Batteries

Annual Battery Conference Long Beach, CA January 9-12, 2001

Ahmad A. Pesaran, Ph.D. Matthew Keyser National Renewable Energy Laboratory Golden, Colorado

Presentation Outline

- Background
 - The need for thermal characterization
- Heat Capacity
- Heat Generation
- Thermal Imaging
- Concluding Remarks

Background

• Electric and hybrid electric vehicles in the market place

• HEV success depends on battery performance, life, and cost

Battery Temperature is Important

- Temperature affects battery:
 - Operation of the electrochemical system
 - Round trip efficiency and charge acceptance
 - Power and energy
 - Safety and reliability
 - Life and life cycle cost

Battery temperature affects vehicle performance, reliability, safety, and life cycle cost

Battery Pack Thermal Management Is Needed

• Regulate pack to operate in the desired temperature range for optimum performance/life

- Reduce uneven temperature distribution in a pack to avoid unbalanced modules/pack and thus, avoid reduced performance
- Eliminate potential hazards related to uncontrolled temperature

NREL Created Capabilities for Battery Thermal Management

- Thermal analysis (CAD) for proper design, evaluation, and packaging
 - Thermal imaging for evaluation and diagnostics
- Fluid and heat transfer experiments for uniform temperature distribution and low parasitic power designs

Thermal characterization for heat generation and heat capacity

• Battery modeling for vehicle simulation

Thermal Characterization

- Designing and evaluating battery thermal management systems requires knowledge of heat generation from full-size modules and their heat capacity
- A large size calorimeter was needed

• Cavity dimensions: 21 cm x 20 cm x 39 cm (WxHxL)

- Heat rate detection: 0.015 W to 100 W
- Minimum detectable heat effect: 15 J (at 25°C)
- Baseline stability: ± 10 mW
- Temperature range: -30°C to 60°C (±0.001°C)

Calorimeter Cavity

Calorimeter Design and Response

- Single-ended heat conduction type
- Heat flux measured between the
 - sample and a heat sink

Heat Capacity

- Amount of heat required to cool or heat 1 kg of a material by 1°C
- Depends on the constituents of the module
- The heat lost/gained (Q) from the battery going from Tinitial to Tfinal is measured by calorimeter

- Heat capacity is calculated by
 - $C_p = Q/m^*$ (Tinitial Tfinal)

Typical Heat Capacity of EV/HEV Batteries

Battery type	Application	Average Temp (°C)	Heat Capacity J/kg/ºC
NiMH – 18 Ah	HEV	33.2	677.4
Li-Ion - 6 Ah	HEV	33.1	795
Li-Ion Polymer – 4 Ah	EV	18	1011.8
NiMH – 90 Ah	EV	33.9	787.5
NiMH – 6.5 Ah	HEV	19	810
VRLA – 16.5 Ah	HEV	32	660
Ni-Zn – 22 Ah	EV	19.95	1167

Heat Generation

- Battery heat generation depends on several factors
 - Chemistry
 - Construction
 - State of charge
 - Direction of current
 - Temperature
 - Charge or discharge rate and profile
- Sources of heat
 - Electrochemical reactions- enthalpy change (+ve or -ve)
 - Resistive heating I²R heating (always +ve)

Measuring Heat Generation

- A module with known capacity is placed in the calorimeter
- The module is brought in thermal equilibrium with the calorimeter cavity temperature
- The module is charged/discharged with battery cyclers
- Thermal equilibrium is achieved again
- Heat rate measured by the calorimeter is corrected
 - Ambient temperature changes
 - Self discharge
- Corrected heat rate is integrated versus time to give heat generation rate

Heat from Optima VRLA HEV Module

Heat generation rate from C/1 discharging of a fully charged Optima module

VRLA Heat Generation Increases with C Rate

Cycle	Discharge/ Charge Capacity (Ah)	Initial Temp. (°C)	Efficie ncy (%)	Average Heat Rate/Module (W)
C/2 Discharge	10.58	0	95.2	4.69
C/1 Discharge	8.47	0	96.3	7.27
2C Discharge	6.60	0	94.2	22.3
5C Discharge	4.48	0	89.6	96.4
Recommended Charging Scheme after C/1 Discharge	8.62	0	83.2	9.88

VRLA Heat Generation Generally Decreases with Temperature

Cycle	Discharge/ Charge Capacity (Ah)	Initial Temp. (°C)	Efficiency (%)	Average Heat Rate/Module (W)
C/2 Discharge	10.58	0	95.2	4.69
C/2 Discharge	11.71	25	96.9	3.02
C/2 Discharge	14.48	45	98.2	1.9
5C Discharge	4.48	0	89.6	96.4
5C Discharge	7.12	25	91.1	84.1
5C Discharge	9.29	45	92.9	67.2

Heat Generation from a Ni-Zn EV Module

Higher heat generation with higher C rate and battery temperature.

Cycle	Discharge Capacity (Ah)	Initial Temperature (°C)	Average Heat Rate/Module (W)
C/3 Discharge	24.9	25	16.2
C/2 Discharge	24.7	25	25.7
C/1 Discharge	23.5	25	57.1
5C Discharge	23.4	25	488.4
C/2 Discharge	19.74	0	30.49
C/1 Discharge	15.57	0	74.65

Heat Generated from a Li-Ion HEV Module under **US06 Driving Profile**

US06 Power Profile for 3 Saft Cells

Initial State of Charge

Impact of Heat Generation Rate and Heat Capacity on a Module Temperature Rise

ESN (

IR Thermal Imaging Provides Insight on Thermal Behavior of Module

a) Face at end of charge.

c) Face at end of 2C discharge.

b) Side at end of charge.

VRLA Module

d) Side at end of 2C discharge.

Thermal Images of Ni-Zn Module

At end of C/1 Discharge

Thermal Images of Li-Ion Cells

- More uniform temperature distribution
 - Conductive materials
 - Terminals at both ends
 - Lower thermal mass

Only 2°C temperature difference

Concluding Remarks

- Thermal management of EV and HEV batteries required.
- Thermal characterization of batteries needed to design of EV and HEV battery thermal management system.
- Heat capacity and heat generation of selected HEV and EV modules were measured.
- IR thermal imaging a visual diagnostic tools

This work was supported by U.S. Department of Energy, Office of Advanced Automotive Technologies.

