

by

Andreas Vlahinos, Kenneth Kelly,

John Rugh & Ahmad Pesaran

National Renewable Energy Lab

Golden, CO

Outline

- Project Objectives & Approach
- Background Robust Design Techniques
- Prismatic NiMH Battery Thermal Analysis
 - -Steady State Variation
 - -Transient
- Summary and Future Plans

Objective and Approach

- The overall objective is apply variation analysis and Six Sigma design process to HEV battery thermal analysis
 - Better thermal performance
 - Longer battery life
- Approach:
 - Evaluate thermal management effectiveness of cylindrical and prismatic batteries with air or liquid cooling for HEV or Fuel Cell vehicles using FreedomCAR 40 kW power profile
 - Perform variation analysis and six sigma

Geometry and Load Cases

Two Battery Geometries: **1. Prismatic 2. Cylindrical**

Two Coolants 1. Air Cooled 2. Liquid Cooled

Two Ambient Load Cases: 1. Buffalo, NY (-20°C amb) 2. Palm Springs (60°C amb)

Traditional Deterministic Design Approach

Accounts for uncertainties through the use of empirical Safety factors:

- Are derived based on past experience
- Do not guarantee safety or satisfactory performance
- Do not provide sufficient information to achieve optimal use of available resources

Six-sigma Design

 Identifying & qualifying causes of variation

- Centering performance on specification target
- Achieving Sigma level robustness on the key product performance characteristics with respect to the quantified variation

Powering Sustainable

EVS 20

Defects (parts per million)

Robust Optimization

EVS 20

EVS 20

Powering

Ford Motor Company SAE – IEBEC 2001

EVS 20

Powering

Ford Motor Company SAE – IEBEC 2002

EVS 20

Powering

-.043311 -.047782 -.047782 -.014745 -.014765 -.0068935 -.001144 .006 Melaw1.05 mm, R2=52.5 mm, max p=1.72154157 MPA, max u==0.542240164 MPA

EVS 20

Powering

Plug Power ASME / RIT Fuel Cell Conference

EVS 20

Powering

USABC / Ford American Society of Quality

EVS 20 Reusable Process Template

Steady State Thermal Analysis with Input Parameter Variations

Powering Sustainable Transportation

FVS 20

Inputs with Variation

- Gap Thickness
- Cell Resistance
- Flow Rate
- Six input parameters: 1. μ_{tgap} 2. σ_{tgap} 3. μ_R 4. σ_R 5. μ_{Frate} 6. σ_{Frate}

Model Outputs

- max temperature
- differential temperature
- pressure drop

Six output parameters:

- 1. μ_{Tmax}
- 2. μ_{dT}
- 3. μ_{dP}
- 4. σ_{Tmax}
- 5. σ_{dT}
- 6. σ_{dP}

Three Upper Specification Limits (USL)

Temperature Differential and Sigma Quality Levels

EVS 20

Design Space with σ Quality Regions T_{max}

S 20

Design Space with σ-Quality Regions dT

Design Space with Sigma Quality Regions for δT

S 20

Design Space with σ-Quality Regions dP

S 20

US 20 Design Space with Converse Converse

Sigma Quality Levels Versus Mean Value

Sigma quality level versus $\mu_{Air Gap}$ Between Cells

Sensitivity Analysis

- The flow rate has the most impact on the maximum temperature
- All three input design variables have about equal effect on the temperature differential
- The internal battery resistance has no effect on the pressure drop.

Transient Thermal Response of Prismatic Batteries

FreedomCAR 40-kW Baseline Power Powering Sustainable Assist & Heat Generation Profiles

USABC FreedomCAR 40-kW Baseline Power Assist Profile

EVS 20 Powering Sustainable Transportation Inlet Temperatures for Air and Liquid Cooling

Inlet, Outlet and Core Temperature for Palm Springs with High Air Flow Rate

EVS 20

EVS 20 Powering Sustainable Springs with High Air Flow Rate

EVS 20 Powering Sustainable Transportation Core Differential Temperature for Palm Springs with High Air Flow Rate

Differential Module Temperature versus Time for 40 kW FreedomCAR Power Profile Palm Springs Air High Flow

EVS 20 Powering Sustainable Transportation Average Core Temperature (Palm Springs)

Average Core Temperature versus Time for Palm Springs

Distribution of Max Core Temperature

EVS 20 Powering Sustainable Transportation **Average Core Temperature** (Buffalo)

Average Core Temperature versus Time for Buffalo

Powering Sustainable Transportation

Summary

- Demonstrated a re-usable process for including statistical variation of input parameters for battery thermal analysis
- Initial analysis with variation shows:
 - T_{max} is most difficult criterion to achieve with the given design constraints and assumptions
 - Effect of conflicting design constraints on sigma quality level
- Completed first round of transient thermal analyses on prismatic design
- Initial transient results show
 - the importance of including transient analysis
 - liquid cooling is more effective, but pressure drop higher
 - transient cooling and warm up time of the heat transfer fluid needs to be considered.

Future plans

- 1. Introduce feedback control on the fan
 - 1. Fan on-off, speed levels, etc

Sustainable Transportation

- 2. Evaluate the effectives of various control systems on thermal performance.
- 2. Find the effect of power pulses in the load cycle on thermal transient .
- 3. Obtain a non-uniform heat generation profile from published information or other test data (thermal imaging).
- 4. Modify duty-cycle to include appropriate diurnal ambient and load conditions
- 5. Perform transient thermal analysis on cylindrical battery pack

Acknowledgments

This research effort was funded by the Department of Energy (DOE), Office of the FreedomCAR and Vehicle Technology.

The authors would like to express their appreciation to:

- Robert Kost, team leader of the FreedomCAR and Vehicle Technology office
- Tien Duong, Technology Manger of Electrochemical Energy Storage program and
- Ted J. Miller of Ford Motor Company and FreedomCAR Battery Tech Team Chairman
- Bruce Bryant, of Ford Motor Company