Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries

Valerie H. Johnson, Ahmad A. Pesaran National Renewable Energy Laboratory

Thomas Sack Saft America

At-A-Glance

- What?
 - Two battery models (Matlab/Simulink environment) for a high-power 6 Ah lithium-ion battery
 - Initial model based on available model from NREL's Advanced Vehicle Simulator (ADVISOR)
- Who?
 - National Renewable Energy Laboratory (NREL) and Saft America, under DOE's PNGV program
- Why?
 - To be used in simulations of hybridelectric vehicles
- When?
 - Testing in Spring 1999
 - Model development through Summer 2000
- Where?
 - NREL, Golden, Colorado

Resistive Model (ADV)

- Model consists of an open circuit voltage (Voc) and an internal resistance (R)
 - parameters are functions of State Of Charge (SOC), Temperature (T), and direction of current flow (Rint only)

- SOC: SOC =
$$\frac{Ah_{max} - Ah_{used}(\eta_{coulomb})}{Ah_{max}}$$
 where $Ah_{used} = \int_{0}^{t} \frac{A}{\eta_{coulomb}Adt}$ for $A > 0$ discharge $A < 0$ charge

- External load is a power request
- Called ADV model, stands for ADVISOR

Capacitance Model (RC)

- Model consists of two capacitors (Cb,Cc) and three resistors (Re, Rc, Rt)
 - parameters are constant
 - SOC estimated from capacitor voltage (Vcb)
- External load is a current request
- Called RC model
- State-space representation in Simulink

Laboratory Test Setup

• Testing gives parameters for either the ADV or RC model

Bitrode Battery Tester

Ambient Testing

Temperature Testing in NESLAB Liquid Bath

Test Procedures

Model Parameters vs. Temperature

Model Parameters vs. Temp, cont.

Model-to-Model Comparison

Overview

- A demanding power request was given to the battery
- ADV model reached voltage limits, while RC model doesn't currently include voltage limits
- RC predicts higher resting voltages

Limiting Cases

- The RC voltage stays within the allowable voltage range
 - 1. discharge at 10 seconds and charge 90 seconds
- The RC voltage exceeds the allowable safe voltage range
 - 2. discharge at 51 seconds and charge at 35 seconds

ADV & RC Model Validation

 US06 derived battery power profile

Observations

- The experimental values lie between the ADV model and the RC model
- Neither discharge (6 V) nor charge (11.7 V) voltage limits are exceeded
- The ADV model substantially overshoots the experimental voltage on both discharge and charge
- During rests (e.g. 56 64 sec), the RC voltage slowly drops, as does the experimental voltage, while the ADV model is constant as it has no time dependent behavior
- During rests, the ADV voltage is slightly lower than experimental values

Model Validation, cont.

Observations

- ADV more accurately predicts instantaneous SOC than RC
- Final ADV SOC was closer to the true SOC than the RC model

Cycle Validation	ADV model	RC model
Overall US06 cycle (600	Avg: 1.4% + Std dev 2%,	Avg: 1.2% + Std dev 0.7%,
seconds) Voltage Error	Max: 15%, over-predict	Max: 5%, under-predict
	voltage swings	voltage swings
Instantaneous SOC	Close tracking, slightly	Slower tracking, similar
	over-predict SOC	behavior patterns
Final SOC (after resting)	3% below	3.7% below

Results & Future Work

- NREL plans on developing a capacitance-based model in ADVISOR
 - Advantages of including cap's: smooth performance behavior, better voltage tracking
- Issues to address with the future Saft/ADVISOR Model:
 - SOC estimation
 - Model to work on a power request basis (not a current request)
 - Operation within safe voltage limits
 - Maintain ADV's parameter (R and C) variation with temperature and SOC
- Saft approved release of the current Saft model in ADVISOR 3.0, available free on the web: www.ctts.nrel.gov/analysis

