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ABSTRACT 

 
Although great advances have been made over the last two decades in the product 
development process, tradition and experience still govern many design decisions.  The 
need for innovative tools is apparent now more than ever as the design team tries to cope 
with multiple requirements such as cost, performance, six-sigma quality, styling, 
packaging, safety, durability, environmental impact, etc. 
 
A DFSS technique that integrates FEA and probabilistic and robust design tools within 
the CAD environment is presented.  An example from the automotive industry that 
demonstrates the process and how engineering quality into designs positively impacts the 
bottom line is presented. 
 
INTRODUCTION 
 
The need for innovative tools is apparent now more than ever as more complex design 
requirements are surfacing such as cost, performance, safety, quality, time to market, 
short life cycle, environmental impacts, WOW aesthetics and major changes in industries' 
business models.  Moreover, the automotive industry’s cycle development time from 
concept to production is being compressed significantly.  Some of the changes in the 
automotive industry’s business model include: vehicle designs are tailored to focused 
markets; vehicles are being manufactured more on a global scale; and vehicles are 
designed increasingly through multiple engineering sites around the world.  
 
Quality issues can be addressed early in the design cycle with robust design 
methodologies.  The goal of robust design is to deliver customer expectations at 
affordable cost regardless of customer usage, degradation over product life and variation 
in manufacturing, suppliers, distribution, delivery and installation.  Since randomness and 
scatter are a part of reality everywhere, probabilistic design techniques are necessary to 
engineer quality into designs.  Traditional deterministic approaches account for 
uncertainties through the use of empirical safety factors.  The safety factors are derived 
based on past experience [Ref 5]; they do not guarantee satisfactory performance and do 
not provide sufficient information to achieve optimal use of available resources.  The 
probabilistic design process has not been widely used because it has been intimidating 
and tedious due to its complexity.  In recent years, CAD and FEA codes have introduced 
integrated design space exploration (PTC's Behavioral Modeling [Ref 14]) and 
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probabilistic systems (e.g. ANSYS' PDS [Ref 1, 3, 5 and 7]) that makes probabilistic 
analysis setup simple if the control and the noise parameters are identifiable [Ref 1].  
Control parameters are those factors which the designer can control, such as geometric 
design variables, material selection, design configurations and manufacturing process 
settings [Ref 8].  Noise parameters on the other hand are factors that affect the design's 
function and are beyond the control of the designer or too expensive to control or change.  
Examples of noise parameters are material property variability, manufacturing process 
limitations, environmental temperatures, humidity, component degradation with time etc. 
 
One of the keys to finding optimal and robust designs is exploring the nature of the 
design space.  The goal is to identify the key design parameters that have the most impact 
on the product attributes.  This paper describes a design for six-sigma technique that 
integrates FEA, probabilistic and robust design tools within the CAD environment. 
 
PROCESS FOR ROBUST DESIGN 
 
An example of cooling a battery pack of a hybrid/electric vehicle is used to describe the 
robust design process.  Due to the large amount of energy exchanged between the 
propulsion/charging system and the battery pack, the thermal management of the 
hybrid/electric vehicles' batteries is a challenging task.   
 
The Parametric the Deterministic Model 
 
Figure 2 shows a typical battery pack of a hybrid/electric vehicle.  A parametric finite 
element model that can predict the maximum temperature (Tmax) and the maximum 
differential temperature within the pack (dT) was built. The gap spacing (tgap) between he 
battery cells, the cooling fan flow rate (Frate) and the internal electric resistance (R) of the 
cells were considered input design variables.  If one views the parametric deterministic 
FEA model as a transfer function the three design variables gap, flow rate, and internal 
resistance can be considered as input variables.  The maximum temperature, the 
differential temperature, and the pressure drop can be considered as the output variables.  
Typical tight integration between CAD and FEA systems enables rapid generation of this 
type of transfer function.   Figure 1 shows the data flow for the parametric deterministic 
FEA model. 
 
The Probabilistic Design Loop 
 
All three design variables were considered as having variation.  It was assumed that all 
three design variables exhibit normal distribution with given mean (µtgap, µR, µFrate) and 
standard deviation (σtgap, σR and σFrate) values. The mean values of the air gap and flow 
rate were considered control variables.  The mean value of the internal resistance and the 
standard deviations of all three input design variables were considered as noise variables 
since they were out of the control of the battery pack designer.  The mean value of the gap  
(µtgap) was allowed to vary within a range of 1 mm and 3mm.  The standard deviation of  
the gap was 5% of the mean value σtgap = 0.05*µtgap.    The mean value of the electric  
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Figure 1 Workflow for Robust Optimization 
 
resistance of the cells was allowed to vary within a range of 0.01 - 0.03 ohms.  The 
standard deviation of the resistance was assumed to be 10% of the mean value, σR = 
0.10*µR.  The mean value of the flow rate was allowed to vary within a range of 0.25 to 
1.5 scfm. The standard deviation of the flow rate was assumed to be 15% of the mean 
value, σFrate = 0.15*µFrate. 
 
For a given set of the mean values of these input design variables and the assumed 
distributions one may easily generate a large set of random numbers for each variable.  
Several sampling techniques are available to generate combination sets of these design 
variables such as Monte Carlo, Latin Hypercube Sampling (LHS), Central Composite, 
Box-Behnken Matrix, etc.  If the "experiment" is fast and inexpensive Monte Carlo and 
LHS sampling techniques work well.  In this case the "experiment" is a thermal finite 
element analysis.  If the "experiment" is time consuming and expensive Box-Behnken 
Matrix in combination with the response surface technique is preferred.  In this example 
Box-Behnken Matrix sampling was used in combination with Forward-stepwise-
regression.  The probabilistic design loop is fully automated and if one views this loop as 
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a transfer function the mean values of the three design variables can be considered as 
inputs (µtgap, µR, µFrate) and the mean (µTmax, µdT, µdP) and standard deviation (σTmax, σdT, 

σdP) of the attributes (max temperature, differential temperature, and pressure drop) can 
be considered as outputs.  Figure 1 shows a graphical representation of the data flow for 
this loop. 
 
Consideration should be given to crafting insightful metrics and establishing a set of 
SMART  (Simple, Measurable, Agree to, Reasonable, Time-based) goals and targets [Ref 
2].  All financial, performance, and innovation perspectives need to be considered to 
produce a well-balanced scorecard.  If a target value, upper/lower limits or process 
capability indices are defined for the attributes one may easily determine the design 
performance using the probabilistic loop's output variables.  In our design example the 
TTarget = 55°C,  dPTarget = 10 scfm and  dTTarget = 2.25°C.  A graphical representation of 
the results can indicate the need for shifting the mean value of the response or squeezing 
the response's variation.   
 
An alternative way to quantify the quality of the design is to determine the sigma level by 
solving for "n" in the following equation. 
 

µTmax - n *σTmax  ≤ TTarget                                                              Eq(1) 

 

If the desired sigma level of quality is achieved the first time the lucky designer can stop 
at this point.  If the desired sigma level of quality is not achieved the designer needs to 
adjust the inputs of the probabilistic design loop (µtgap, µR, µFrate) and rerun his analysis.  
This adjustment can be automated with a design optimization loop. 
 
The Design Optimization Loop 
 
The two main control variables used as inputs of the probabilistic design loop are the 
mean value of the air gap and the flow rate.  The three main outputs of that loop are the 
sigma quality levels of each one of the three targets.  The designer's goal is to select the 
appropriate sets of values for the design variables (µtgap, µR, µFrate) that maximizes the 
minimum value of the three sigma quality levels.  This task has been fully automated with 
design optimization loop [Ref 11].  Since each "experiment" of this loop is 
computationally expensive the D-optimal sampling technique was selected to choose the 
initial set of trials.  The Sequential Unconstrained minimization technique was selected as 
the optimization method.  Figure 1 shows the workflow for the optimization loop.  If the 
geometry is very challenging the design optimization loop can be automated using PTC's 
Behavioral Modeling.  The Behavioral Modeling Extension of Pro/Engineer is an 
additional module that has the capability of generating analysis and optimization study 
features.  The external analysis feature sends certain information to an external program, 
executes it, retrieves some predefined results from the output information and generates 
Pro/Engineer parameters. These parameters can be optimized using the optimization 
feature [Ref 13].  
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RESULTS 
 
Experimental Work 
 
The National Renewable Energy Laboratory (NREL) purchased a 2001 model year hybrid 
electric Toyota Prius to evaluate its battery thermal performance.  The Prius NiMH 
battery was removed from the vehicle and instrumented with thermocouples and voltage 
and current sensors.  Measurements of the pack coolant fan power and air flow rate were 
also made.  Experimental testing by NREL included chassis dynamometer driving of the 
vehicle, on-road driving cycles, off-board cycling of the battery pack, and heat capacity 
and heat generation measurements at the Lab's calorimeter.  This testing gave NREL a 
good understanding of the battery thermal characteristics and response to various power 
demands required by the vehicle. 

 

 

Figure 2 Battery Module 
 
The Prius battery pack is a NiMH design that consists of 38 prismatic modules, each 
having six 1.2 V cells.  The total pack nominal voltage is 273.6 V.  Figure 2 shows part of 
the Prius pack with the 2 of the 38 prismatic modulus.  Forced cabin air flows around and 
between the modules in air spaces between each module. Variable cross-sectional area air 
plenums are used to maintain constant airflow rates to all the modules.  

 

The Parametric FEA Model  
 
A parametric FEA model of the battery module was developed for thermal analysis.  The 
physical properties defined in the model are shown in table 1.  The boundary conditions 
applied to the model include convection on the top and two flat sides of the module.  The 
heat transfer coefficient for the top and side areas was calculated based on the airflow 
rate.  A heat transfer coefficient of 5.0 W/m2 K was applied at the bottom and two ends of 
the module.  The inlet air temperature was assumed to be 25 C and varied linearly along 
the height of the module, with the outlet temperature calculated from: 
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Tout  = q/mcp + Tin  

 
Heat generation (q) inside the core of the battery was calculated based on internal 
resistance (R) and input current (i).   
 

q = i2R 
 
The input current was assumed constant at 15 amps.  This is based on the average current 
levels measured during several different vehicle driving cycles.  The nominal internal 
resistance, based on measured values, was 0.02 ohms. 
 
 

Table 1.  Physical Parameters of the Parametric Finite Element Model 
 

Battery Core Properties  
Thermal conductivity 15 W/m K 

Density 2327 kg/m3 
Heat capacity 810 J/kg K 

Internal resistance 0.02 ohms 
Battery current 15 amps 

Air gap between modules 0.002 m 
   
Module Plastic Coating  

Thermal conductivity 0.17 W/m K 
Density 1930 kg/m3 

Heat capacity 910 J/kg K 
   

Air Properties  
Thermal conductivity 0.0258 W/m K 

Density 1.1 kg/m3 
Specific heat 1013 J/kg K 

Dynamic viscosity 1.97E-05 N s/m2 
Air inlet temperature 25 C 
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Results of the probabilistic analysis 
 
A typical set of the probability density functions of the parametric FEA input model are 
shown in figure 3.   
 

 
 

Figure 3 Probability density functions of input variables 
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Execution of the probabilistic design loop will result in a probabilistic distribution of the 
response attributes (maxT, dT, dP).  Figure 4 shows the histograms of the attribute values 
for this probabilistic design loop.   
 

 
Figure 4 Histograms of the Response Attributes 
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Figure 5 shows the sensitivity of the design variables on the response attributes.  It is 
apparent that the flow rate has the most impact on the maximum temperature.  All three 
input design variables have about equal effect on the temperature differential.  The 
internal battery resistance has no effect on the pressure drop. 
 

 
 

Figure 5 Sensitivity of the Design Variables on The Response Attributes 
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Figure 6 shows the design space with sigma quality regions for the maxT.  If that was the 
only criteria one can quickly declare victory since the top left region of the design space 
will provide six-sigma level quality.  Figure 7 shows the design space with sigma quality 
regions for the dT.  The entire left side of the design space appears to provide six-sigma 
level quality.  Figure 8 shows the design space with sigma quality regions for the dP.  
Figure 6 through 8 illustrates a case of contradicting design requirements.  The smaller air 
gap provides lower maxT and dT but at a cost of higher dP.  The minimum value of the 
sigma quality level for all criteria is shown in figure 9.  One may observe a point at the 
center of the design space will be the best choice for the mean value of the flow rate and 
the air gap.  Only a two-sigma quality level was achievable within the range of the design 
variables.  In a similar study [Ref 14] probabilistic modeling of manufacturing variations 
coupled with optimization can avoid over-design (deterministic analysis) and reduce the 
component weight by 17%. 
 
 

 
 

Figure 6 Design Space With Sigma Quality Regions for the maxT 
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Figure 7 Design Space With Sigma Quality Regions for the dT 
 

 
 

Figure 8 Design Space With Sigma Quality Regions for the dP 
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Figure 9 Design Space With Sigma Quality Regions for all criteria 
 

OVERCOMING THE IMPLEMENTATION CHALLENGES 

 
The design automation described passes the drudgery of multiple simulation runs to the 
computer.  Therefore substantially greater portions of engineers' time can be spent on 
fundamental engineering.  This enables engineers to spend more time understanding 
customer requirements and focusing on design constraint definitions (QFD).   
 
Unfortunately implementation of these methodologies has not "taken off" due to several 
technical and organizational challenges.  Some of the technical challenges are that: 
 

• The design process remains unstructured or unplanned.  
• There is insufficient number of experts for product design attribute prediction.   
• Product attributes have not been formalized and managed early enough. 
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• The CAD/CAE tool set is not tailored to the design environment. 
• Data are not readily available to feed the analysis. 
 

Some of the organizational challenges are: 
 

• There is a lack of clear metrics and success stories. 
• There is an expectation that consensus on the methods to be used is required. 
• There is a lack of custom capabilities that integrate commercially available 

software (CAD, FEA, PDS, Optimization). 
• There is a lack of an organization's commitment to product development 

excellence. 
 
Steps for realizing the expected gains from the integrated product development process 
are to identify the right organization, identify the right project, and implement solutions 
strategies.  One should select the right organization within the company that is committed 
to product development excellence, willing to change, able to make decisions and willing 
to bypass consensus when needed.  One should also select a project that is repetitive and 
measurable and currently is a bottleneck.  This project should be of short duration, high 
value and have objective measurable requirements.  The management should clarify and 
document the desired decision process early in the design cycle.  An effort should also be 
made to simplify and automate the tool usage for standard analyses by creating a design 
environment tailored to the design process.  Augmentation of the experts by automating a 
large portion of the design process is necessary.  The development of a repository of 
design and manufacturing rules that govern the design process is also required.  The 
development of this repository will increase the use of existing designs and will capture 
and reuse the design knowledge. 
 
 
CONCLUSIONS 
  
The objectives of this research effort are to demonstrate a process that empowers 
engineers to generate Six-Sigma quality designs early in the design process, to identify 
the implementation challenges and to offer solution strategies to overcome them. Some of 
the conclusions are: 

• By incorporating the physical scatter into the modeling, the risk of failing legal or 
consumer tests can be minimized. 

• The example presented demonstrates that with the probabilistic design and 
optimization integration, engineers are enabled to identify better designs that meet 
the performance objectives and are less sensitive to manufacturing variations. 

• Modern CAD and FEA software tools that have incorporated probabilistic design, 
allow distributed computing that enables the implementation of this computer 
intensive technology. 
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SYMBOLS 

CAD  Computer aided Design 
DFSS  Design for six sigma 
FEA  Finite Element Analysis 
QFD  Quality Function Development 
cp  heat capacity 
dPTarget  target for deferential module temperature 
dTTarget  target for pressure drop 
i  input current  
Tin  inlet air temperature 
Tout  outlet air temperature 
Ttarget  target for maximum cell temperature 
µtgap  mean value of  air gap between modulus 
µR  mean value of internal cell resistance 
µFrate  mean value of flow rate 
µTmax  mean value of maximum module temperature 
µdT  mean value of deferential module temperature 
µdP  mean value of pressure drop 
σtgap  standard deviation of air gap  
σR  standard deviation of cell resistance 
σFrate  standard deviation of flow rate 
σTmax  standard deviation of maximum module temperature 
σdT  standard deviation of deferential module temperature 
σdP  standard deviation of pressure drop 
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