

A Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries

Space Power Workshop Los Angeles, CA April 18, 2011 Kyu-Jin Lee*, Kandler Smith, Gi-Heon Kim

This research activity is funded by the US Department of Energy (Dave Howell)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Objectives

- Develop thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells
- Understand the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfer
- Develop a tool and methodology to investigate macroscopic designs of cylindrical Li-ion battery cells

Multi-Scale Physics in Li-Ion Battery Systems

Porous Electrode Model of Li-ion Battery

- Pioneered by Newman group (Doyle, Fuller, and Newman 1993)
- Captures lithium diffusion dynamics and charge transfer kinetics across electrodes
- Predicts current/voltage response of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve heat and electron current transport in large cell systems

Computational Cost of Modeling Large Li-ion Cell

Number of grids in a model resolving mesoscale geometry: ~ 10^{2-3}

A full 3-D mesoscale cell model is extremely expensive.

Multi-Scale Multi-Dimensional (MSMD) Model

Description

- Introduces separate computational domains for corresponding length scale physics
- Decouples geometry between the domains
- Has independent coordinate systems for each domain
- Uses two-way coupling of solution variables using multi-scale model schemes

Advantage

- Selectively resolves higher spatial resolution for smaller characteristic length scale physics
- Achieves high computational efficiency
- Provides flexible & expandable modularized framework

Large Cell Design Differences

Prismatic cells

Photo Credit: NREL-Dirk Long

- Stacking / folding / semi-winding
- Complex and slow production processes
- Better packing efficiency for modules
- Better heat transfer

Cylindrical cells

Photo Credit: http://en.wikipedia.org/wiki/List_of_battery_sizes

- Winding
- Simple and fast production processes
- Low manufacturing cost

Large Cell Design can Lead to Large Temperature Difference

Anisotropic thermal conductivity of electrodes coated on current collectors
K_{in-plane} 10-100W/mK

Negative current collector Anode electrode Separator Cathode electrode Positive current collector

Prismatic cell

Cylindrical cell

- Stacked electrodes
- Thin and wide shape helps thermal uniformity
- Wound electrodes
- Center region of cell heats up easily due to the poor radial thermal conductivity

Large Cell Design can Lead to Large Electric Potential Difference

- Large number of small metal current collectors
- Electric current flows through small distance
- A pair of long continuous metal current collectors
- Electric current flows through long distance.
- Tab design can critically impact on cell performance

Example: Cell volume: 0.21 mL Prismatic cell: 200 mm x 150 mm x 7 mm Cylindrical cell: radius: 25.85 mm height: 100 mm Thickness of an electrode pair: 300 μm Length of current collectors: ~ 7 m

2-D Cylindrical Cell Model

- Previous study

Sub-model choice for 2-D cylindrical cell model

Applicable to continuous tab design

Continuous Tab Cell Design Evaluation

Effects of "Aspect Ratio" of a Cylindrical Cell

– Previous study

Continuous Tab Cell Design Evaluation

Effects of "Aspect Ratio" of a Cylindrical Cell

– Previous study

Present Study: *Electrical Design Issue-Tab Configuration*

Current flows along the winding direction

- 2-D axisymmetric model is not applicable to a wound cell.
- Geometries and materials of electric current paths in spirally wound layer structure must be properly resolved.

Sub-model choice for 3-D cylindrical cell model

Particle domain sub-model

Electrode domain sub-model

1-D spherical particle representation model

1-D porous electrode model

3-D spiral wound cell model

Cell Domain Model: Spirally Wound Cell Model

Unit structure: Double-paired electrodes on single-paired current collectors

Double-sided anode electrode Negative current collector Separator Positive current collector Double-sided cathode electrode

Winding: Alternating radial placement of double-paired electrodes

Two electrode pairs are formed when the unit structure is wound

Two points with a distance of a winding cycle of outer electrode pair are matched in the wound structure

14

Spiral Cell Structures: Alternatively layered jelly roll

A current collector has two electrode pairs in both sides

Spiral Cell Structures: *Electrical potential fields and charge transfer reaction*

Non-uniform electrical potential along current collectors Non-uniform charge transfer reaction across electrodes

Non-uniform potential along the current collectors occurs from electric current in the winding direction

Modeling Case

- ✓ Diameter 40 mm, inner diameter 8 mm, height 100 mm form factor
- ✓ Positive tabs on the top side, negative tabs on the bottom side
- ✓ 10-Ah capacity

Tab locations for 5-tab case

NATIONAL RENEWABLE ENERGY LABORATORY

Innovation for Our Energy Future

Modeling Results

Modeling Results

> Different tab numbers (2, 5, 10 and continuous tab) on cell performance

> 10-Ah capacity, 5C discharge

Electrochemical reaction rate comparison

Conclusions

- Used Multi-Scale Multi-Dimensional model to evaluate largeformat cell designs by integrating micro-scale electrochemical processes and macro-scale heat and electrical current transport.
- **Spatial non-uniformity** of battery physics, which becomes significant in large batteries, requires 3 dimensional model.
- Developed macro-scale domain model resolved spirally wound structures of lithium-ion batteries.
- Modeled effects of tab configurations and the doublesided electrode structure.
- Increasing the number of tabs in spiral-wound cells would be preferable to manage internal heat and electron current transport, and to achieve uniform electrochemical kinetics.
- The spiral-wound cell model provides quantitative information regarding optimization of cell design including tab location and number.

US. Department of Energy, Vehicle Technology Program Dave Howell, Hybrid Electric Systems Team Leader Brian Cunningham, CAEBAT Coordinator

National Renewable Energy Laboratory Ahmad Pesaran, Energy Storage Team Leader