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Performance, Durability and Safety

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future2
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Modeling Thermal Runaway

 Constructed empirical reaction models using calorimetry data for 

component decompositions; Approach practiced by J. Dahn’s group

 Enhanced understanding of the interaction between heat transfer and 

exothermic abuse reaction propagation for a particular cell/module 

design, and 

 provided insight on how thermal characteristics and conditions can impact 

safety events of lithium-ion batteries.
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SEI decomposition reaction front

0

68

Reaction Propagation

• Propagates Initially in azimuthal direction
• Forms hollow cylinder shape reaction zone
• Center axis zone starts to react
• Finally reaction goes further in outer radius cylinder zone
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Runaway Propagation

5 minutes apart between each frame

Top View

Side View

In a multi-cell module
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2 seconds apart between each frame

Closer Look at Reaction in an Individual Cell
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Fast Heat Dissipation

Temperature Heat of SEI decomposition

 Small cell module: 20 x 18650

 Highly conductive carbon matrix wetted with phase change 

materials 
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• Developed an integrated model for multi-physics internal short circuit 

of lithium-ion cells by linking and integrating NREL’s unique 

electrochemical, electro-thermal, and abuse reaction kinetics models

• Performed 3D multi-physics internal short simulation study to 

characterize an internal short and its evolution over time
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Electro-Thermal Model

Abuse Kinetics Model Electrochemical Model

0

50

100

150

200

0

50

100

150
59.5

60

60.5

61

61.5

62

X(mm)

soc [%]

Y(mm)

Internal Short Circuit Model Study

socT

Multi-Physics Internal Short Circuit Model
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Performed Case Study with A 20Ah Prismatic Cell

• Case Studies – 20Ah Stacked Prismatic Cell

ISC between metal (Al & Cu) current collector foils

ISC between electrode (cathode & anode) layers

Impact of short area – separator hole propagation

ISC between Al to anode – short bypassing cathode

Impact of Cell Size

Comments on Shutdown Separator

Impact of ISC location 

Cu

Cu

Cu
Al

Al

200 mm

140 mm

7.5 mm

Shorted Spot

Positive Tab

Negative Tab

To investigate impacts of various short natures and cell characteristics
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Results Agree Well with Laboratory Observations

The simulation results have reasonably reproduced the experimental 

observations from other research groups/companies including SNL, 

Exponent, Celgard, LGchem, and Sony

Sandia National Lab, Celgard

LG Chem

Exponent

SONY
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40 mm

35 mm

3 mm

Shorted Spot

Shutdown Separator for Large Cells?

Short Between Al & Cu Metal Foils
Al

Cu

• Cell Capacity: 20 Ah 0.4 Ah

Rshort ~ 10 mΩ

Ishort ~ 300 A (15 C-rate)
Rshort ~ 7 mΩ

Ishort ~ 34 A (85 C-rate)
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Shutdown Separator Limitation

Li+ e-

STOP
Li+

• Thermally triggered

• Block the ion current in circuit

Large Cell

Representation

STOP
Li+

Difficult to apply in

• Large capacity system

• High voltage system
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Ceramic Reinforced Separator

Short Between Cathode and Anode Electrodes Cathode
Anode 

• Shorted area: 1 mm x 1 mm

Rshort ~ 20 Ω

Ishort ~ 0.16 A (< 0.01 C-rate)

current density field 

near short

surface temperature

43.1oC

25.5oC

• Thermal signature of the short is hard to detect 

from the surface

• The short for simple separator puncture is not 

likely to lead to an immediate thermal runaway

separator hole propagation

3 cm x3 cm
Myung Hwan Kim, LG Chem, AABC08

Rshort ~ 30 mΩ

Ishort ~ 100 A (5 C)

3cm x 3cm Separator Hole
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• Maintaining structural integrity of separator seems critical to delay short evolution 
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External Short of Multi-Cell Battery

Background

• Cell PTC device proven effective control for 

over-current hazards at Li-Ion cell and small 

battery level

• Known as ineffective in high-voltage or large 

capacity battery designs

• Need to verify if NASA’s spacesuit battery 

design (16P-5S) array could depend on cell 

PTC devices to tolerate an external short
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• Commercial lithium ion 18650 cells typically 

have a current-limiting PTC (positive 

temperature coefficient) device installed in 

the cell cap to limit external currents in the 

event of an external short to the cell.

• The PTC device consists of a matrix of 

crystalline polyethylene containing 

dispersed conductive particles, usually 

carbon black. The resistance of the PTC 

device increases sharply with temperature.  

• Once triggered, PTC behaves as a thermal 

regulator

• PTC device often fails to function in high 

voltage / high capacity systems

PTC Device

PTC Resistance vs. Temp

Data: SRI
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Model Development Approach

Unit Cell Model

R1(SOC,TJR)
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Integrated Thermal and Electrical Network Model of a Multicell Battery

for Safety Evaluation of Module Design with PTC Devices during External Short
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Unit Cell Model – Electrical

ECM including 

PTC device
R1(SOC,TJR)

VOCV(SOC)

C1(SOC,TJR)

Rs(SOC,TJR)

V1

RPTC(TPTC)

+

-

I(t)
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Jellyroll PTC

PTC Resistance vs. Temp.

Data: SRI
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Unit Cell Model – 5-node Thermal

j
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dt
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Steady Form
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A PTC:3.38W, Jelly:0.0093W

B PTC:3.0W, Jelly:0.0093W

C PTC:2.0W, Jelly:0.0093W

D PTC:1.0W, Jelly:0.0093W

E PTC:1.0W, Jelly:1.0W
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Detailed Cell Thermal Model
• Large computational requirement

• Not suitable for multicell modeling
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5-Node Cell Thermal Model
• Low order dynamic model

• Suitable for multicell modeling

Comparison of Detailed and 5-Node Models  
for different heat generation conditions
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Multicell Network Model − Thermal

Thermal Network Model

Thermal Mass: Identifying thermal mass at each node

Heat Generation: PTC heat, discharge/charge heat (, abuse reaction heat) 

Heat Transfer: Quantifying heat exchange among the nodes
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Experimental Model Validation: 16P Bank

16P model validated against a bank short test

• 10 mΩ external short

• Peak inrush current

• PTC device trip time

• Steady-state behavior

• Temperature rise profiles for all 16 cells

I T

Test Data & Photo: SRI
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/

Simulation Results at Various Values of Rshort

• Rshort ≤ 40 mΩ:  PTC-limited

• Rshort ≥ 50 mΩ:  SOC-limited

• Tripped PTC device serves as 

thermal regulator

[dRPTC/dT]130˚C = 3 Ω /˚C

(5 orders of magnitude > than at 25˚C)

• Large pre-trip heat rates are 

safe provided that they have

– Short duration

– Sufficient thermal mass

– Sufficient heat dissipation

Steady State Temp

Average Heat

Before and After Trip

PTC

Jellyroll

Post-trip

Pre-trip

Max Temp
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Extend Validated 16P Model for 16P-5S Pack 

Aluminum Plate

Nickel Bus Plate

Nickel Bus Plate

Aluminum Plate

Top Button

Jelly Roll Node 3

Jelly Roll Node 1

Jelly Roll Node 2

Glass Reinforced 

Plastic Plate

Glass Reinforced 

Plastic Plate

• 11 nodes are vertically placed at  

80 cell locations 

• Node thermal connections are 

defined considering various heat 

transfer modes

• Aluminum enclosure box is 

considered thermally lumped

• 11 x 80 + 1 = 881 node system
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ABSL experiment: Bank 3 short through external resistor

80 cell battery in 

test enclosure

10 mΩ resistor

Photo: ABSL

Model Validation for Pack External Short

Photo: ABSL

Photo: NASA
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ABSL Instrumentation

25
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Brick Temperature Sensor Locations

A

B

Center-most 

cell

C

Cell Temperature Sensor Locations

Bank 3 Photos: ABSL
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Model Validation – First 6000 seconds
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E.g., bank 3 short is caused by foreign object between banks 3 and 4*

Bank 1

+

Bank 2

-

Bank 3

+

Bank 4

-

Bank 5

+

* Requires more than two faults: Introduction of foreign object debris & penetration of Kapton/Nomex/Kapton divider between banks

Model Analysis for Pack-Internal Shorts
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4 V

8 V 16 V

12 V

.... ....

Schematic of Shorted Middle Cell Bank

• Short runs through can of cell from adjacent bank 4

• Bare walls of cells are negatively biased

• Note that 3-layer (Kapton-Nomex-Kapton) bank-to-bank insulator is omitted for clarity

Cell Bank 

3
Short

path

+

+

+

+ + +

- - - -

- -
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Bank 3 Short from 100% SOC

• Cell 42 (bank 3) participates in electrical discharge

• Cell 56 (bank 4) does not electrically discharge; its 

external can wall serves as a path for short current

• Model assumes ohmic heat of short shared equally by 

cells 42 and 56

• Internal-to-pack short more thermally severe than 

external-to-pack

• Thermal mass dominates – negligible dependence on 

Earth vs. space boundary conditions

• Runaway possibly prevented at 10 mΩ

• Runaway predicted at 20,30 mΩ with collateral damage

Bank 3
Cell 42 Cell 56

Rshort Short Condition

(SOC0 = 100%)

Cell 42 Tmax

(Bank 3)

Cell 56 Tmax

(Bank 4)

10 mΩ External-to-pack, earth 97oC @ 6000-s 75oC @ 6000-s

Internal-to-pack, earth 150oC @ 16-s 146oC @ 16-s

Internal-to-pack, space 153oC @ 16-s 147oC @ 16-s

20 mΩ Internal-to-pack, space 525oC @ 110-s 522oC @ 110-s

30 mΩ Internal-to-pack, space 595oC @ 240-s 591oC @ 240-s

30National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future



Bank 3 Short from 100% SOC:  10 mΩ vs. 20 mΩ

10 mΩ:
Bank 3 PTC devices trip quickly and 

uniformly because high inrush 

current causes PTC self-heating
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20 mΩ:
Bank 3 PTC devices trip slowly at 
different times, depending upon 
bank 3 temperature distribution

Cell 42 PTC trips at 8 s

Remaining bank 3 PTC 

devices trip at 16 s

Cell 42 PTC trips at10 s

Remaining bank 3 PTC 

devices trip between 60 

s and 110 s

31National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future



Bank 3 short from 100% SOC:  10 mΩ vs. 20 mΩ

10 mΩ:
Bank 3 PTC devices trip quickly and 

uniformly due to high in-rush 
current causing PTC self-heating
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20 mΩ:
Bank 3 PTC devices trip slowly, at 

different times dependent upon bank 3 
temperature distribution

All bank 3 PTC 

devices trip by 16 s

All bank 3 PTC 

devices trip by 110 s

Cell 42 Cell 42

Rest of bank 3 Rest of bank 3
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Bank 3 Short from 100% SOC:  Cell-to-Cell Radiation

Bank 3
Cell 42

Rshort Short Condition

(SOC0 = 100%)

Cell wall 

emissivity

Cell 42 Tmax

(Bank 3)

20 mΩ Internal-to-pack, 

earth

ε = 0.3 

(Nominal)

525oC @ 110 s

ε = 0.9

(Coating)

410oC @ 102 s

(Insufficient

impact)

Design question: 

Would a high-emissivity 

coating applied to bare cell 

walls help limit thermal 

excursion?
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Bank 3 Short: SOC Dependence

Bank 3
Cell 42

Rshort Short Condition Initial SOC Initial OCV Cell 42 Tmax

(Bank 3)

20 mΩ Internal-to-pack, 

earth

1.5% 3.428 V 117oC @ 85 s

0.5% 3.346 V 83oC @ 80 s

No thermal runaway when stored at 0% SOC (3.25 OCV).

Is battery design tolerant to 

pack-internal shorts when 

stored at low SOCs?
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Summary

• NREL performed an internal short model simulation study to characterize an 

internal short and its evolution over time by linking and integrating NREL’s 

electrochemical cell, electro-thermal, and abuse reaction kinetics models.

• Initial heating pattern at short events depends on nature of short, cell 

characteristics, and system configuration.

• Temperature rise for short is localized in large capacity cells.

• Short current is carried mostly by metal collectors.

• A simple puncture in the separator is not likely to lead to an immediate 

thermal runaway of a cell.

• Maintaining the integrity of the separator seems critical to delay short 

evolution.

• PTC device is an effective thermal regulator. Maximum cell temperature 

(final state) is very similar for a variety of initial and boundary conditions.
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Summary

• 80-cell spacesuit battery electrical/thermal model 

• Captures relevant physics for cell-external shorting events, including PTC 

behavior

• Agrees well with pack-external bank 3 short experiment run by ABSL

• Predicts that design will tolerate all pack-external short resistance conditions

• Relocating short from pack-external (experimental validation) to pack-

internal (modeling study) causes substantial additional heating of cells 

that can lead to cell thermal runaway

• Negligible sensitivity to earth/space boundary conditions (thermal mass 

dominates)

• Large sensitivity to Rshort

• Rshort < 10 mΩ:  16P bank PTC devices trip quickly, most likely preventing runaway

• 10 mΩ < Rshort < 60 mΩ:  Thermal runaway appears likely

• Nevertheless, this finding re-emphasizes the general imperative of battery pack 

assembly cleanliness

• Design is tolerant to pack-internal short when stored at 0% SOC
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DOE’s New CAEBAT Program

• Will integrate the accomplishments of battery modeling 

activities in national lab programs and make them accessible 

as design tools for industry

• Will shorten time and cost for design and development of 

EDV battery systems
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