

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries

218th ECS Meeting, Las Vegas, NV Oct 14, 2010

Kyu-Jin Lee*, Gi-Heon Kim, Kandler Smith

NREL/PR-5400-49795

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Objectives of this Study

Behaviors of spirally wound large format Li-Ion batteries are affected by macroscopic designs of cells.

- To develop thermal and electrochemical models resolving 3 dimensional spirally wound structures of cylindrical cells.
- To understand the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers.
- To develop a tool and methodology to support macroscopic designs of cylindrical Li-lon battery cells.

Multi-Scale Physics in Li-Ion Battery

- Wide range of length and time scale physics
- Design improvements required at different scales
- Need for better understanding of interaction among varied scale physics

Multi-Physics Interaction

- Previous study

Porous Electrode Model

Charge Transfer Kinetics at Reaction Sites

$$j^{Li} = a_{s}i_{o} \left\{ \exp\left[\frac{\alpha_{a}F}{RT}\eta\right] - \exp\left[-\frac{\alpha_{c}F}{RT}\eta\right] \right\}$$

$$i_{0} = k(c_{e})^{\alpha_{a}}(c_{s,\max} - c_{s,e})^{\alpha_{a}}(c_{s,e})^{\alpha_{c}} \quad \eta = (\phi_{s} - \phi_{e}) - U$$

Species Conservation

$$\begin{split} & \frac{\partial c_s}{\partial t} = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right) \\ & \frac{\partial (\varepsilon_e c_e)}{\partial t} = \nabla \cdot \left(D_e^{e\!f\!f} \nabla c_e \right) + \frac{1 - t_+^o}{F} j^{\text{Li}} - \frac{\mathbf{i}_e \cdot \nabla t_+^o}{F} \end{split}$$

$$\begin{split} & Charge\ Conservation \\ & \nabla \cdot \left(\sigma^{\text{eff}} \nabla \phi_s \right) - j^{\text{Li}} = 0 \\ & \nabla \cdot \left(\kappa^{\text{eff}} \nabla \phi_e \right) + \nabla \cdot \left(\kappa_D^{\text{eff}} \nabla \ln c_e \right) + j^{\text{Li}} = 0 \end{split}$$

Energy Conservation $\rho c_{p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$ $q''' = j^{Li} \left(\phi_{s} - \phi_{e} - U + T \frac{\partial U}{\partial T} \right) + \sigma^{eff} \nabla \phi_{s} \cdot \nabla \phi_{s} + \kappa^{eff} \nabla \phi_{e} \cdot \nabla \phi_{e} + \kappa_{D}^{eff} \nabla \ln c_{e} \cdot \nabla \phi_{e}$

- Pioneered by Newman group (*Doyle, Fuller, and Newman 1993*)
- Captures lithium diffusion dynamics and charge transfer kinetics
- Predicts *current/voltage response* of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve *heat* and *electron current* transport in large cell systems

Porous Electrode Model

Charge Transfer Kinetics at Reaction Sites

$$j^{Li} = a_{s}i_{o} \left\{ \exp\left[\frac{\alpha_{a}F}{RT}\eta\right] - \exp\left[-\frac{\alpha_{c}F}{RT}\eta\right] \right\}$$

$$i_{0} = k(c_{e})^{\alpha_{a}}(c_{s,\max} - c_{s,e})^{\alpha_{a}}(c_{s,e})^{\alpha_{c}} \quad \eta = (\phi_{s} - \phi_{e}) - U$$

Species Conservation

$$\begin{split} \frac{\partial c_s}{\partial t} &= \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right) \\ \frac{\partial (\varepsilon_e c_e)}{\partial t} &= \nabla \cdot \left(D_e^{e\!f\!f} \nabla c_e \right) + \frac{1 - t_+^o}{F} j^{\text{Li}} - \frac{\mathbf{i}_e \cdot \nabla t_+^o}{F} \end{split}$$

$$\begin{split} & Charge\ Conservation \\ & \nabla \cdot \left(\sigma^{e\!f\!f} \nabla \phi_s \right) - j^{\text{Li}} = 0 \\ & \nabla \cdot \left(\kappa^{e\!f\!f} \nabla \phi_e \right) + \nabla \cdot \left(\kappa^{e\!f\!f}_D \nabla \ln c_e \right) + j^{\text{Li}} = 0 \end{split}$$

Energy Conservation $\rho c_{p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$ $q''' = j^{Li} \left(\phi_{s} - \phi_{e} - U + T \frac{\partial U}{\partial T} \right) + \sigma^{eff} \nabla \phi_{s} \cdot \nabla \phi_{s} + \kappa^{eff} \nabla \phi_{e} \cdot \nabla \phi_{e} + \kappa^{eff}_{D} \nabla \ln c_{e} \cdot \nabla \phi_{e}$

- Pioneered by Newman group (*Doyle, Fuller, and Newman 1993*)
- Captures lithium diffusion dynamics and charge transfer kinetics
- Predicts *current/voltage response* of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve *heat* and *electron current* transport in large cell systems

Multi-Scale Multi-Dimension (MSMD) Model

- Introducing separate computational domains for corresponding length scale physics
- Geometry decoupling between the domains
- Using independent coordinate systems for each domain
- Two-way coupling of solution variables using multi-scale model schemes
- Selectively resolve higher spatial resolution for smaller characteristic length scale physics
- Achieve high computational efficiency
- Provide flexible & expandable modularized framework

Large Cell Design Issues

Prismatic cell

Cylindrical cell

Stacking electrodes coated on metal current collectors
Less efficient manufacturing processes for mass production

- Rolling electrodes coated on metal current collectors
- Well established manufacturing process for small batteries
- More difficulties for large cell design (cf. tap design, heat management, etc)

Large Cell Design Issues

Prismatic cell

Cylindrical cell

Stacking electrodes coated on metal current collectors
Less efficient manufacturing processes for mass production

- Rolling electrodes coated on metal current collectors
- Well established manufacturing process for small batteries
- More difficulties for large cell design (cf. tap design, heat management, etc)

Previous Development of Wound Cell Model

Tab-less Wound Cell Design Evaluation

Effects of "Aspect Ratio" of a Cylindrical Cell - Previous study

Present Study

Tab configuration: number & size

Cylindrical cell

Unwinding jellyrolls

- 2D axisymmetric model is not applicable to a wound cell with a finite number of current tabs where lateral electric current is not negligible in current collector foils.
- Geometries and materials of electric current paths in spirally wound layer structure should be properly resolved.

Current flows along the winding direction

3 dimensional spiral wound geometry

New Development of Cell Domain Model

Spirally Wound Cell Model:

Unit structure: Double Paired Electrodes on Single-Paired Current Collectors

Double sided anode electrode
Negative current collector
Separator
Positive current collector Double sided cathode electrode

Winding: Alternating Radial Placement of Double Paired-Electrodes

- Two electrode pairs are formed when the unit structure is wound.
- Two points with a distance of a winding cycle of outer electrode pair are matched in the wound structure

Spiral cell structures

A current collector has two electrode pairs in both sides.

Spiral cell structures

Non-uniform electrical potential along current collectors Non-uniform charge transfer reaction

We cannot expect uniform potential along the current collectors due to inevitable electric current in winding direction.

Modeling case

- ✓ Diameter 40mm, inner diameter 8mm, height 100 mm form factor
- Positive tabs on the top side, negative tabs on the bottom side
- ✓ 10 Ah capacity

Tab locations for 5 tab case

Tab configuration of each electrode pairs

Parametric study

Different tab numbers (2,5,10 and continuous tab) on cell performance
 10 Ah capacity, 5C discharge

Electrochemical reaction rate comparison

Temperature deviation comparison

Conclusion

- **A Multi-Scale Multi-Dimension model** was used for evaluating large format automotive cell designs by integrating micro-scale electrochemical process and macro-scale heat and electrical current transports.
- Spatial non-uniformity of battery physics, which becomes significant in large batteries, cause unexpected performance in spiral wound lithiumion batteries.
- A macro-scale domain model based on spirally wound structures of lithium-ion batteries was developed to understand effects of tab configurations and the double sides electrodes structure.
- Spiral wound cells with more tabs would be preferable to manage cell internal heat and electron current transport, and consequently to achieve uniform electrochemical kinetics over a system.
- The spiral wound cell model can provide **quantitative data** in terms of finding the optimum number of tabs to battery manufacturers.

US. Department of Energy, Vehicle Technology Program

Dave Howell, Hybrid Electric Systems Team Lead

National Renewable Energy Laboratory Ahmad Pesaran, Energy Storage Team Lead

NATIONAL RENEWABLE ENERGY LABORATORY