

Thermal Analysis of the Vulnerability of the Spacesuit Battery Design to Short-Circuit Conditions

2010 Space Power Workshop Manhattan Beach, CA April 22, 2010

Gi-Heon Kim Larry Chaney <u>Kandler Smith</u>* Ahmad Pesaran Eric Darcy

NREL/PR-540-47948

kandler.smith@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Background and Motivation for Present Work

Background

- Cell PTC device proven effective control for overcurrent hazards at Li-ion cell and small battery level
- Proven ineffective in highvoltage battery designs
- Fire in 2004 Memphis FedEx facility possibly caused by PTC device failures in largecapacity (66p-2s) battery, which shorted while at 50% SOC

Motivation

- Can NASA's spacesuit battery design (16p-5s) array depend on cell PTC devices to tolerate an external 16p short?
- What are conditions for safe storage and operation?

Innovation for Our Energy Future

Objectives

- Create mathematical model of full 16p-5s spacesuit battery that captures electrical/thermal behavior during electrical shorts
 - Extend PTC, cell, and module models from previous work^{1,2,3}
- Assess vulnerability of 16p-5s spacesuit battery to pack-internal (cell-external) shorts between module banks
- 1. "Cell PTC Device Characterization," E. Darcy et.al, 2008 NASA Aerospace Battery Workshop
- "Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-ion Modules," K. Smith et al, 2008 NASA Aerospace Battery Workshop
- 3. "Thermal/Electrical Modeling for Abuse Tolerant Design of Lithium Ion Modules," K. Smith et al., Int. J. Energy Res., vol. 34, no. 2, pp. 204-215, 2010.

Photo: NASA

Overview

- Modeling Approach
 - Cell with PTC device
 - Electrical
 - Thermal (5-node)
 - Module
 - Electrical (multinode network)
 - Thermal (multinode network)
 - Pack
 - Electrical (multinode network)
 - Thermal (multinode network)
- Validation with experiments from ABSL
 - Pack-external short of bank 3
- Modeling analysis
 - Pack-internal short of bank 3
 - Design and storage considerations
- Conclusions

PTC Device – Background

• Commercial lithium ion 18650 cells typically have a current-limiting PTC (positive temperature coefficient) device installed in the cell cap to limit external currents in the event of an external short to the cell.

• The PTC device consists of a matrix of crystalline polyethylene containing dispersed conductive particles, usually carbon black.* The resistance of the PTC device increases sharply with temperature.

• When a short is applied to a cell, the elevated currents cause the PTC device to self-heat and move to a high resistance state in which most of the cell voltage is across the PTC device but the current is significantly reduced.

• As long as the short is maintained, the PTC device produces enough heat to keep itself in this tripped state (lower current being offset by greater voltage drop across PTC device).

Single Cell Short:

*Doljack, F., IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 4, 732, 1981

Model has to Capture Key Physics of an Electrical Short

<u>16P Bundle External Short Test</u>

- Performed by Symmetry Resources, Inc.
- Moli ICR18650J cells
- 16 parallel
- 10 $m\Omega$ external short

Photos: SRI

- PTC device behavior
 - $R_{PTC}(T)$
 - Thermal connection with the cell
- Cell electrical behavior
 - Current/voltage/temperature relationship
- Cell-to-cell heat transfer
 - Conduction
 - air gaps
 - electrical tabs
 - radiation
- Cell-to-ambient heat transfer
 - Convection to air
 - Conduction through wire leads

Model Development Approach

Integrated Thermal and Electrical Network Model of a Multicell Battery for Safety Evaluation of Module Design with PTC Devices during External Short

Unit Cell Model – Electrical

PTC Resistance (D)

10

10⁻⁷

50

100

PTC Temperature (°C)

150

Equivalent circuit model including PTC device

Data: SRI

Unit Cell Model – 5-node Thermal

National Renewable Energy Laboratory

Multicell Network Model – Thermal

Thermal Network Model

Thermal Mass: Identifying thermal mass at each node
Heat Generation: PTC heat, discharge/charge heat (optional: abuse reaction heat)
Heat Transfer: Quantifying heat exchange among the nodes

$$Q_{transport,i} = \sum_{j=1, j \neq i} -Q_{ij}, \quad Q_{ij} = Q_{ij,radiation} + Q_{ij,connector_conduction} + Q_{ij,convection} \cdots$$

Multicell Network Model – Thermal

Heat Transfer to Ambient

Heat Rejection Through Wires

 $Q_{i-a} = h_{\infty}A_i(T_i - T_{\infty}) + \sigma A_i(T_i^4 - T_{\infty}^4)$

Photo: NASA ISS01E5361

Photo: ABSL

Transverse Heat Transfer Through Plates

Heat Conduction Through Air Gap

140

120

 $Q_{base} = kA_b \frac{dT}{dx}\Big|_{x=0} = hA(T_b - T_{\infty})$

 $T - T_{\infty} = Ce^{-m_2 x} \quad x \ge x_1$

25 ([cm]

 $T - T_{\infty} = Ae^{m_1 x} + Be^{-m_1 x} \quad 0 \le x < x_1$

Extend Validated 16P Model for 16P5S Pack

16P model validated against a bank short test

- Created and validated a multicell math model capturing electrical and thermal interactions of cells with PTC devices during abuse
- PTC device is an effective thermal regulator; maximum cell temperature (final state) is very similar for a variety of initial and boundary conditions for tested 16P events

- Extended the study to identify thermal configuration among the components of the 3d module design
- Expanded the model capability to capture thermal and electrical responses and their interactions in complex geometries
- 881 thermal nodes are used

Vertical Arrangement of Thermal Nodes

- 11 nodes are vertically placed at 80 cell locations
- Node thermal connections are defined considering various heat transfer modes
- Aluminum enclosure box is considered thermally lumped
- 11 x 80 + 1 = 881 node system

Model Validation for Pack-External Short

ABSL experiment: Bank 3 short through external resistor

Photo: ABSL

ABSL Instrumentation

Cell Temperature Sensor Locations

Brick Temperature Sensor Locations

Model Validation – First 6000 seconds

Cell Temperature Distribution at 6000 seconds

Beyond 6000 Seconds, ABSL Test Data Show Periodic Spikes in Temperature

Model Qualitatively Captures Spikes in Temperature

Model Qualitatively Captures Spikes in Temperature

 \rightarrow Edge cell is the coolest of the bank 3 shorted cells,

- \rightarrow Has lowest PTC resistance, and
- \rightarrow Is first cell to completely discharge.

Model Analysis of Pack-Internal Shorts

E.g., bank 3 short is caused by foreign object between banks 3 and 4*

* Requires more than two faults: Introduction of FOD & penetration of Kapton/Nomex/Kapton divider between banks

Schematic of Shorted Middle Cell Bank

- Short runs through cell can of cell from adjacent bank 4
- Bare walls of cells are negatively biased
- Note that 3-layer (Kapton-Nomex-Kapton) bank-to-bank insulator is omitted for clarity

Bank 3 Short from 100% SOC

- Cell 42 (bank 3) participates in electrical discharge
- Cell 56 (bank 4) does not electrically discharge; its external can wall serves as a path for short current

Model assumes ohmic heat of short shared equally by cells 42 and 56

- Internal-to-pack short more thermally severe than external-to-pack
- Thermal mass dominates negligible dependence on earth vs. space boundary conditions
- Runaway possibly prevented at 10 $m\Omega$
- Runaway predicted at 20,30 m Ω with collateral damage

R _{short}	Short Condition (SOC ₀ = 100%)	Cell 42 T _{max} (Bank 3)	Cell 56 T_{max} (Bank 4)
10 mΩ	External-to-pack, earth	97°C @ 6000-s	75°C @ 6000-s
	Internal-to-pack, earth	150°C @ 16-s	146°C @ 16-s
	Internal-to-pack, space	153°C @ 16-s	147°C @ 16-s
20 mΩ	Internal-to-pack, space	525°C @ 110-s	522°C @ 110-s
30 mΩ	Internal-to-pack, space	595°C @ 240-s	591°C @ 240-s

Bank 3 Short from 100% SOC: $10 \text{ m}\Omega \text{ vs.} 20 \text{ m}\Omega$

Bank 3 short from 100% SOC: 10 m Ω vs. 20 m Ω

Bank 3 Short from 100% SOC: Cell-to-Cell Radiation

Design question:

Would a high-emissivity coating applied to bare cell walls help limit thermal excursion?

R _{short}	Short Condition (SOC ₀ = 100%)	Cell wall emissivity	Cell 42 T_{max} (Bank 3)	
20 mΩ	Internal-to-pack, earth	ε = 0.3 (Nominal)	525°C @ 110 s	(Minimal change)
		ε = 0.9 (Coating)	410°C @ 102 s	

Bank 3 Short: SOC Dependence

Is battery design tolerant to pack-internal shorts when stored at low SOCs?

R _{short}	Short Condition	Initial SOC	Initial OCV	Cell 42 T _{max} (Bank 3)
20 mΩ	Internal-to-pack, earth	1.5%	3.428 V	117°C @ 85 s
		0.5%	3.346 V	83°C @ 80 s

No thermal runaway when stored at 0% SOC (3.25 OCV).

What About Cell-Internal Shorts?

- Scenario
 - 20 m Ω short bridging anode and cathode inside a cell jellyroll
 - Defective cell at 100% SOC
 - Battery at room temperature
- Possible projections based on model results
 - Cell bank energy would rapidly dissipate inside the cell and raise its temperature
 - Defective cell's PTC device would trip and choke off current from the 15 cells in parallel, well before their PTC devices trip
 - So, the hazard may be limited to the defective cell only and less collateral damage may result vs. the internal pack short
- Further work is necessary in this area for confirmation

Conclusions

- 80-cell spacesuit battery electrical/thermal model
 - Captures relevant physics for cell-external shorting events, including PTC behavior
 - Agrees well with pack-external bank 3 short experiment run by ABSL
 - Predicts that design will tolerate all pack-external short resistance conditions
- Relocating short from pack-external (experimental validation) to packinternal (modeling study) causes substantial additional heating of cells that can lead to cell thermal runaway
 - Negligible sensitivity to earth/space BCs (thermal mass dominates)
 - Large sensitivity to R_{short}
 - $R_{short} < 10 \text{ m}\Omega$: 16P bank PTCs trip quickly, most likely preventing runaway
 - 10 m Ω < R_{short} < 60 m Ω : Thermal runaway appears likely
 - Fortunately, all three layers of bank-to-bank separator must fail for pack-internal short scenario to occur
 - Nevertheless, this finding re-emphasizes the general imperative of battery pack assembly cleanliness
- Design is tolerant to pack-internal short when stored at 0% SOC

This work was funded by NASA Johnson Space Center under interagency agreement.

- NASA-JSC Eric Darcy, Sam Russell
- ABSL Craig Flora
- UTC Hamilton-Sunstrand Mike Puskar
- DOE Office of Energy Efficiency & Renewable Energy – David Howell, Hybrid Electric Systems Team Lead, Energy Storage R&D

Extra Slides

Contact Resistance Formulation

For uncertainty of quantifying thermal resistance at the contact interface between the parts, a parametric formulation was developed. Temperature discontinuity at interface, $\Delta T_{interface}$, was set as a fraction of the total temperature difference between the adjacent nodes, ΔT .

$$\Delta T_{interface} = f * \Delta T_{I-4} \qquad (0 <= f < 1)$$

$$K_{1-4} = \frac{1}{R_{1-4}} = \frac{1 - f}{\left(\frac{\Delta x_{Al}}{k_{Al}A} + \frac{\Delta x_{Ni}}{k_{Ni}A}\right)} \qquad \left[\frac{W}{K} \right]$$

 Δx : half of plate thickness