

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries

Kandler Smith · Kandler.Smith@nrel.gov, Gi-Heon Kim · Gi-Heon.Kim@nrel.gov, Ahmad Pesaran · Ahmad.Pesaran@nrel.gov – National Renewable Energy Laboratory

Abstract

An empirical degradation model, capturing the effects of both storage and cycling, was developed for the Li-ion Nickel-Cobalt-Aluminum chemistry³. The degradation model is coupled with NREL's multi-dimensional multi-scale (MSMD) cell model to explore the impacts of nonuniform cycling and temperature inside a cylindrical 20 Ah PHEV cell over the course of an accelerated cycle-life test. Results show significant differences compared to a lumped analysis that neglects the cell's real geometry.

Background and Approach

Background

- Context: Trend towards larger cells - HeV \longrightarrow PHeV \longrightarrow EV
- Reduced cell count reduces cost & complexity - Drawback: Greater internal nonuniformity
- Elevated temperature, > ---> Degradation - Regions of localized cycling /

Objectives

Understand impact of large-format cell design features on battery useful life - Improve battery engineering models to include realistic geometry and physics Reduce make-and-break iterations, accelerate design cycle

Multiscale approach for computational efficiency

Length scales:

- 1. Li-transport (1~100 µm)
- 2. Heat & electron transport
- (<1~20 cm)

- Time scales
- 1. Repeated cycling profile (minutes)

2. Degradation effects (months)*

Empirical degradation model considers <u>both</u> storage and cycling effects

Storage (Calendar) Fade

- Typical t^{1/2} time dependency
- Arrhenius relation describes T dependency

- Cycling Fade
- Typical t or N dependency
- Often correlated log (# cycles) with ΔDOD

Simulation Domain Macro Grid Micro Grid

Degradation Model³

Empirical model fit to test data for the Li-ion NCA chemistry⁴⁻⁹

∆DOD Effect

- Model includes t^{1/2} (~storage) and N (~cycling) dependencies
- \bullet a₁ (~storage) and a₂ (~cycling) coefficients vary with ΔDOD

 $R = a_1 t^{1/2} + a_2 N$

	$a_1 (\Omega/day''^2)$	a ₂ (Ω/cyc)	R ²
× 68%	0.98245e-4	9.54812e-7	0.9667
▽ 51%	1.00001e-4	5.70972e-7	0.9684
□ 34%	1.02414e-4	0.988878e-7	0.94928
O 17%	1.26352e-4	-7.53354e-7	0.9174

Li-ion (C/NCA) degradation model summary

- Well designed for thermal & cycling uniformity, low capacity fade rate Thermal: 30°C ambient, h = 20 W/m²K

Capacity fade & resistance growth for various repeated discharge profiles (1C, 5C, 10C, US06) Temperature rise accelerates degradation

Nonuniform degradation effects important for predicting cell performance fade

Results

Modeling investigation: Accelerated cycling of 20 Ah PHEV-type cylindrical cell

Cell Dimensions: 48 mm diameter, 120 mm height

▲DOD: 90% SOC_{max} to 30% SOC_{min}

- Accel. Cycling: Various discharge (shown below),
- 10 min rest, 1C charge, 60 min rest, repeat.

No accelerating trend observed for low-rate <u>1C</u> discharge cycles Clear accelerating trend observed for high-rate US06 and 10C cases

US06 – Nonuniform degradation

Relative Capacity

0 month Regions near terminals suffer most significant capacity loss Large overpotential — Excessive cycling 8 months Inner core loses capacity faster than outer cylinder wall High temperature 🔶 Material degradation 0 month

- Significant growth in internal temperature during <u>US06</u> and <u>10C</u> discharge cycling
- Internal temperature remains ~constant for <u>1C</u> discharge cycling

Ah Imbalance

- Early in life, inner core and terminal areas are cycled the most
- Later in life, those same areas are most degraded and are cycled least
- Imbalance continually grows throughout life

- Lumped temperature model overpredicts cell level fade (1-D echem/thermal model also overpredicts fade)
- Illustrates strong coupling between multidimensional degradation and cell performance

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Conclusions

For 20 Ah cylindrical cell with good thermal & cycling uniformity at beginning of life...

- Imbalance grows throughout life (T, Ah throughput, capacity loss)
- Acceleration mechanism apparent for high-rate cycling cases:
- Higher impedance \longrightarrow Higher temperature \longrightarrow Faster degradation
- Major factors leading to nonuniform degradation - Nonuniform temperature (degrades inner core) Nonuniform potential (degrades terminal regions)
- Regions heavily used at beginning of life (inner core, terminal regions) are used less and less as life proceeds
- 1-D echem/lumped thermal model not suited to predict performance degradation for large cells - For a given electrode-level degradation mechanism, overpredicts cell-level capacity fade and impedance growth

Acknowledgements

- U.S. Department of Energy, Office of Vehicle Technologies
- Dave Howell, Energy Storage Program

References

- 1. G.-H. Kim, K. Smith, "Three-Dimensional Lithium-Ion Battery Model," 4th International Symposium on Large Lithium Ion Battery Technology and Application, Tampa, FL, May 12-14, 2008.
- 2.G.-H. Kim, K. Smith, "Multi-Scale Multi-Dimensional Model for Better Cell Design and Management," 214th Electrochem. Soc. Pacific Rim Meeting, Honolulu, HI, October 12-17, 2008.
- 3.K. Smith, T. Markel, A. Pesaran, "PHEV Battery Trade-Off Study and Standby Thermal Control," 26th International Battery Seminar & Exhibit, Fort Lauderdale, FL, March 16-19, 2008
- 4.J. Hall, T. Lin, G. Brown, "Decay Processes and Life Predictions for Lithium Ion Satellite Cells," 4th International Energy Conversion Engineering Conference & Exhibit, San Diego, CA, June 26-29, 2006.
- 5. J. Hall, A. Schoen, A. Powers, P. Liu, K. Kirby, "Resistance Growth in Lithium Ion Satellite Cells. I. Non Destructive Data Analyses," 208th Electrochem. Soc. Mtg., Los Angeles, CA, October 16-21, 2005.
- 6.J.P. Christophersen, I. Bloom, E.V. Thomas, K.L. Gering, G.L. Henriksen, V.S. Battaglia, D. Howell, "Advanced Technology **Development Program for Lithium-Ion Batteries: DOE Gen 2** Performance Evaluation Final Report," Idaho National Laboratory, INL/EXT-05-00913, July, 2006.
- 7. M.C. Smart, K.B. Chin, L.D. Whitcanack, B.V. Ratnakumar, "Storage Characteristics of Li-Ion Batteries," NASA Aerospace Battery Workshop, Huntsville, AL, November 14-16, 2006.
- 8.L. Gaillac, "Accelerated Testing of Advanced Battery Technologies in PHEV Applications," 23rd Electric Vehicle Symposium, Anaheim, CA, December 2-5, 2007.
- 9. P. Biensan, Y. Borthomieu, "Saft Li-Ion Space Batteries Roadmap," NASA Aerospace Battery Workshop, Huntsville, AL, November 27-29, 2007.

This presentation does not contain any proprietary, confidential, or otherwise restricted information. Presented at the Advanced Automotive Battery and EC Capacitor Conference, 8-12 June 2009, Long Beach, CA • NREL/PO-540-46041

20 Ah