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Outline

Using Phase-Change Material for Automotive Battery Thermal Management

Background & Motivation
Approach

Analysis
» Use in Intermittent Discharge Application
» Use in HEV application
» Use in PHEV application

Summary
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Background & Motivation

Temperature is one of the most significant factors impacting
both the performance and life of a battery

More effective, simpler, and less expensive thermal
management would assist in the further development of
affordable battery packs and increase market penetration of
HEVs and PHEVs

Battery thermal management using phase-change material
(PCM) has potential to bring benefits, such as passively
buffering against life-reducing high battery operating
temperatures

PCM technology should be assessed to determine whether
it would improve upon existing vehicle battery thermal
management technologies
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Prototype Technology

PCM-absorbed Carbon Matrix - AliICell®

Description: 18650 Li-Ion cells are surrounded by a high-conductivity graphite
‘sponge’ that is saturated by a phase-change material (‘wax’). The matrix
holds the PCM in direct contact with the cells, and the latent heat capacity to

melt the PCM is intended to absorb the waste heat rejected by the cells during
periods of intensive use.

Battery Module PCM/Graphite Matrix

)

.
Cells

NOTE: This module is not a optimized design for readily use in HEV/PHEV




Perceived Advantages & Disadvantages of
Using PCM for Vehicle Battery Thermal Management

Possible Advantages

» Reduced peak temperatures
» Better temperature uniformity
» Reduced system volume

Possible Disadvantages
» Heat accumulation

» Additional weight

» Undesirable thermal inertia




Acquired Product/Material
Samples from AllCell®

TEST:

Property/Performance
Measurement & Validation

MODEL: Module/System
Level Analysis

1l

Evaluation for use in HEV/
PHEV
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Approach

Cell Characteristics

Q?
Calorimeter Test
R« / Efficiency

PCM Module

Design
« Matrix Dimensions
* PCM Amount

* Melting Temperature
* Cell Array Config.
* Additional Cooling
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THERMAL RESPONSES
Of SYSTEM

Battery Temperature History
Frequency/Duration of
Exposure to High Temperatures

Operation

Scenario

Standard Driving Profile
Real World Survey

Vehicle Selection
Control Strategy
Component Sizing
Grade

Vehicle Simulation
Vehicle Drive Data

Battery Power Profile
in Vehicles
(HEV,PHEV)
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Prototype Module Test

Evaluate thermal management
performance of PCM matrix in the
prototype module

Provide data for model validation and
improvement

Instrument for voltage(4), current(1)
and temperature(21) distribution;

» K-type calibrated thermocouples

» +0.35°C uncertainty

Connect to battery cycler and place in
environmental chamber
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Model Description

Thermally Lumped System Model
system level analysis: temporal variation of battery system thermal responses

PCM/Graphite marx Assume fast internal heat transfer

Reasonable for the prototype module, where the system
Biot number is roughly 0.005 (<<0.1).

e_(T_Tmelt )2 /éTz

Multi-dimensional Model

Multi-dimensional analysis: spatial temperature imbalance in a module
Developed with finite volume method (FVM) e
Address thermal distributions through a module

Ignore fluid motion of melted PCM in a porous carbon
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Analysis & Evaluation

Analysis of Intermittent Discharge Application
Analysis of Aggressive HEV Application
Analysis of PHEV 10 Cycling Application
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Analysis of Intermittent Discharge Application

National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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gyition of Use in Intermittent Discharge

oo Pl E o

» Limited duration of heat
release 50
» Finite heat generation

Possible to quantify
maximum heat for PCM

Temperature (°C)
X =
[ | [ ]
| i

» Usually long rest period

between uses T 10A
No need for fast heat 25 +—i— —
removal from the system 5 65 15 25 35 45 55 65 75 85 95
I Test Time (min) T
Modal, 104 Expanmment, 104, Max Proba Expenrment, 104, Min Probe
‘ Model, 304 ——Expanment, 304, Max Probe Expenment, 30A, hin Probe
Modsl, S04 Expariment, 504, Max Proba Expatimeant, 104, Min Probe

Model shows good agreements with experiments in general

Module temperature stays below the PCM melting temperature
(55°C) under 30°C ambient temperature discharge event



r*

65

b5

Tamparatura pC}

a5

a0

25

vl

50|
45 |

40 L

On of Use in Intermittent Discharge

SUSTAINABILITY: THE FUTURE OF TRANSPORTATION

Thermal Performance Comparison
under Different Ambient Conditions
— 40A single discharge for 9 minutes

at 25°C ambient - no phase change at 40°C ambient - phase change
T T BO - T - - - - -
PCM Module
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Tim a{m Inutas} Tima(minutasg)

Peak temperatures at PCM module and Air-cooled module were
comparable under room temperature discharge case

PCM latent heat limits the peak temperature of module under high
temperature environment use

National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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Temporal & Spatial Temperature Variations
40A Single Discharge at 40°C Ambient

— PCM Phase Change Limits the Cell Temperature Increase

9 min A4.60 40.44
5O O O .-5?-38 55.31 =2

54.87

&
|

Temperavtre ( ':C]-

3

Time(minutss)

Average Temperatures of Cells and Matrix

< l— National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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Concludlng Remarks on
Use in Intermittent Discharge Application

PCM effectively prevents the exposure to battery damaging
nigh temperatures especially for high rate discharge under
high temperature ambient condition

Fast heat transfer through highly conductive carbon matrix
keeps the temperatures of cells in a module fairly uniform

Passive thermal management using the PCM technology
would show excellent performance in intermittent discharge
applications
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Analysis of Aggressive HEV Application

National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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Prototype Module TéSt Proflle B
for Mid-size Sedan HEV: US06

Prototype P/E ~ 10 kW/kWh

1500 - _
» Underpowered pack for HEV < 1000 - R el kg
» Oversized in energy content g 50 | | “A Lu “\ “ h
Developed electrical test profile using & o5 ’”—:*T - ) 4 L 9
: : . o 0 1 00
vehicle simulations 3 500 ‘ J r i i m I’
O
. . . . -1000 -
Profile was clipped with continuous = '
. _— -1500
charge/discharge limits Cycle Time (s)
o 2hr cycle at 30°C 4hr cycle at 45°C
Model Validation ;g ] Cycling with clipped profile gg |
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20 = Experiment, min probe
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Test Time (min) Test Time (min)



anion of Use in HE VApplication

STAINABILITY: THE FUTURE OF 'IIQANSPGEF,&TEON

Contlnuous Cycllng
Model Investigation: Periodic Steady State

_Geometric Profile US06 HEV - uncllpped

Continuous cycling ®

ST O

Heat rejection rate
- Equilibrium system T =
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Real World ‘HEV’ Drive

2 hour mountain drive
» Start from mountain
» To the suburb of Denver

“Prius” drive with stock NiMH pack
» Collected data during the drive
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\Q 051 [N] === National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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Thermal Performance with a Virtual Li-lon Pack
in Real World ‘HEV’ Drive

Virtual Module Prius Stock Virtual
|dentical electrical response NiMH Module | Li-lon Module
12 26650 cells (6p 2s) E 2 all
Specific Power (W/kg) 1300 1820
3mm SpaCing Wlth 4X3 Specific Energy (Wh/kg) 46 67
94 % efficiency Mass Density (kg/m?) ~2500 ~2000
Replace 1 StOCk module Specific Heat (J/kg.K) ~850 ~850

nn r r r r an

——PCM —PCM
0| —— PCM +AR — POM + AR Heat Reject/on Rate

—— AR ONLY | #[——amony » h=10 W/m2K

5 gop o
2 7l » Q=9.9 W/module
;l;u-.l- o0 - i vy
v s} ﬁﬂ“ﬁff:\ - PCM only
é ol /,{f o ”w_“\m: ‘@8- PCM + Air
% Air onl
soff Battery Temperatures - ' only
EEIU :leI F:iILI E.;.I 1 iLI 191 l:iIU HIU 1 éU Tau

Timc({minutes) Time{minutes)



ipraiiion of Use in HEV Application

SUSTAINABILITY: THE FUTURE OF TRANSPDRTATI‘DN

Thermal Responses with a Large Cell Pack
in Real World ‘HEV’ Drive
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National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy
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in Real World ‘HEV’ Drive
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A more advanced battery would have fewer cells to meet the
vehicle power requirements
» Higher power cells could cause higher volumetric heat

Brief Investigation
» Doubling Power Rate
» Efficiency Increase, 94% > 96%
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Concludlng Remar
Use in HEV application

Rate of nw  Rate of

Heat Generation q Heat Removal
System Maximum ::> -
Heat Generation Rate

} Design Decision for Heat Removal Rate

4+—

+<— + Phase-Change Material
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Analysis of PHEV10 Cycling Application



pyion of Use in PHEVApplication | 'S ZJ

EE TAINABILITY: THE FUTURE OF TRANSPORTATION
Prototype Module Test

for Mid-size PHEV10 - US06 Cycle

Typical PHEV drive =

Time (s}

» Initial EV drive (Charge Depleting) + Flowing HEV drive (Charge Sustaining)
» Thermally Aggressive Operation + Thermally Moderate Operation
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© T 50 -
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0 60 120 180 240 0 60 120 180 240

Test Time (min) Test Time (min)



rantion of Use in PHEV Application

SUSTAINABILITY: THE FUTURE Orli:‘ﬁkhSDE ,-flﬂ r“,ﬁ
PHEV1O Battery Temperature Response
at high ambient temperature (45°C)

h=10 W/m?K

—— US06,PCHM
65 —— US06,PCM + AR
24 —— USD6, AIR ONLY

—~ Bk oy
< = an
] n

55}
5 5
o -
2 50 519
L] i
[ o
w 45F L
= ® 10
= bl e
[} -
> A0t z \\/ -

W\; RV YAV s
5
ast o —
.-
3'] 1 1 1 1 1 D 1 1 L 1 1
U 2U 4u 1] 85U 100 120 u 2U 41 BU 85U 10U 12U
Tirneciminutes) Time(minutes)

Initial thermally aggressive Charge Depleting drive causes
temperature excursion to over 60°C in air-cooling battery
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Methods for L|m|t|ng Temperature Excursion
during EV Drive

If available,
» Use the thermally regulated cabin air (30°C) for battery cooling

If not,
» Incorporate a high heat transfer coefficient (40W/m?2K) design

» Limit EV drive at high battery temperatures
» Combine PCM with moderate heat transfer coefficient (20W/m?2K) design
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Concluding Remarks on
Use in PHEV application

In short EV range PHEVs, combining PCM for
addressing aggressive initial EV drive can
minimize the size of air cooling systems.

In large EV range PHEVs, the batteries may have
enough thermal mass by themselves to provide a
buffer against intermittent temperature spikes.

TM=deTalced. tad =17
J | Nt | ¥
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Impact of “PCM/Graphite Matrix”

n Thermal Runaway Propagation in a Module
Results from G.-H. Kim et al. , 212th ECS, Washington, DC, Oct, 2007)

If one cell goes into thermal runaway, will it propagate to other
cells and how?

500 1
2
450 | 3
s—
400l 5
6
380 - e 7
B
300 - g
10
i2
200 | 13
14
150 15
15
2 17
¢ . = 18
2 19

0

1 1 1 1 1 1 1 1 1
10 20 ao 40 50 60 70 BD 80 20

Base Case (air) PCM/Graphite Matrix Imbedded

Rather than air, highly conductive PCM/Graphite Matrix filled the space
between the cells in the module.

National Renewable Energy Laboratory . Innovation for Our Energy Future . A national laboratory of U.S. Department of Energy



Multi-Dimensional Analysis
Thermal Abuse Reaction Model

Reaction Heat from
Temperature SE| decomposition
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Summary

Battery thermal management using PCM shows excellent
performance in limiting peak temperatures at short period extensive
battery use

Using PCM without convective cooling methods may not applicable
in HEV/PHEYV applications

Combining PCM method would allow smaller air cooling system and
less need to limit battery power output in high-temperature
conditions

Vehicle designers will need to weigh the potential increase in mass
and cost associated with adding PCM against the anticipated
benefits
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