Innovation for Our Energy Future

Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells

212th ECS Meeting Washington DC Oct 7-12, 2007

Gi-Heon Kim, Kandler Smith

National Renewable Energy Laboratory

Golden, CO, USA

Why 3D Cell Model?

Physical Description of Lithium-Ion Cell

Chemical Kinetics

Heat & Mass Transport

Charge Conservation

$$j^{Li} = a_s i_o \left\{ \exp \left[\frac{\alpha_a F}{RT} \eta \right] - \exp \left[-\frac{\alpha_c F}{RT} \eta \right] \right\}$$

$$i_0 = k(c_e)^{\alpha_a} (c_{s,\text{max}} - c_{s,e})^{\alpha_a} (c_{s,e})^{\alpha_c}$$

$$\nabla \cdot (\sigma^{\text{eff}} \nabla \phi_s) - j^{\text{Li}} = 0$$

$$\nabla \cdot (\kappa^{\text{eff}} \nabla \phi_e) + \nabla \cdot (\kappa^{\text{eff}}_D \nabla \ln c_e) + j^{\text{Li}} = 0$$

$$\frac{\partial c_{s}}{\partial t} = \frac{D_{s}}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial c_{s}}{\partial r} \right)$$

$$\frac{\partial (\varepsilon_{e} c_{e})}{\partial t} = \nabla \cdot \left(D_{e}^{eff} \nabla c_{e} \right) + \frac{1 - t_{+}^{o}}{F} j^{\text{Li}} - \frac{\mathbf{i}_{e} \cdot \nabla t_{+}^{o}}{F}$$

$$\rho c_{p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$$

Why 3D Cell Model?

Chemical Kinetics

Heat & Mass Transport

Charge Conservation

Species Distribution
Temperature Distribution
Potential Distribution
...
→ Cell Performance

Three dimensional features such as thermal/electrical paths design inside a cell, form factors, dimensions and local boundary conditions can have a significant impact on cell performance and life. (The impact would be more significant in large format cells due to size effect.)

Better understanding will give a chance for improving ...

- Cell Design
- Cell Operation Strategy
- Cell Management

Approach in Presented Study Multi-Scale-Multi-Dimensional Model

- Difficulties in resolving thin layer structure in a computational grid
- ✓ Assumed negligible potential gradients along current collectors
- ✓ Focused on addressing temperature imbalance impact

Assumptions

- Uniform V_o in (X,R)-domain, $V_o = V_o(t) = \phi_s(X, R, x=L, t) \phi_s(X, R, x=0, t)$
- Uniform T in (x,r)-domain, T=T(X, R, t)

Solution Variables

Source: www.dimec.unisa.it

NOTE

Selection of "sub-grid electrochemical model" is independent to "macro-grid thermal model".

Analysis

MODEL COMBINATION 1

- ✓ Macro Grid Model: Axisymmetric Thermal Model, Finite Volume Method
- ✓ Micro Grid Model: 1D FULL electrochemical Model, Finite Volume Method
- Moderate Discharge with a Large Format Cylindrical Cell

MODEL COMBINATION 2

- ✓ Macro Grid Model: Axisymmetric Thermal Model, Finite Volume Method
- ✓ Micro Grid Model: State Variable Model Ref) K. Smith, Ph.D. dissertation, 2006
- Performance Evaluation of a PHEV-type Large Format Cylindrical Cell
- Form-factor (D/H) and cell size were examined for parameters
 - 1. 150A Continuous Discharge, Moderate usage profile
 - 2. 200A Geometric Cycle, Severe usage profile

MODEL COMBINATION 1

Axisymmetric Thermal Model + 1D FULL electrochemical Model

time step size: 1sec, time step #: 2040

CPU time: 36 hours @ Windows/PC

~ 60 times slower than real time

Moderate Discharge

Current & Temperature Evolution

MODEL COMBINATION 2

Axisymmetric Thermal Model

+ State Variable Model (SVM)

SVM preferred due to its fast execution

- SVM <u>Identification</u>
 - Numerical "curve fitting" procedure in frequency domain
 - Local-linearized models (identified at each T, $\theta_{s,e}$, $\theta_{s,e}$)
 - Local models are assembled to form global nonlinear model
 - ~10 hours to identify model from a single parameter set
- SVM <u>Simulation</u>
 - Micro-grid 1-D Electrochemical model has explicit solution
 - Macro-grid 2-D Axisymmetric Thermal Model typically converges in 2 iterations
 - 9 minutes to simulate 150A discharge (940 sec simulation time, dt = 1 sec)

"MSMD model combination 2" runs ~1.75 faster than real time

Given continued issues in Li-ion thermal safety, there is a desire for a fast running thermal model incorporating realistic internal details of a cell.

Large format high power batteries present challenging thermal requirements

- High energy and high power requirements
- Large format preferred to small cells
 - fewer interconnects
 - less monitoring & balancing circuitry
- Significant heating may be possible depending upon power profile
- Internal temperature imbalance expected to lead to:
 - Internal current imbalance
 - Increased time at temperature in localized regions (degradation)

APPENDIX A - USABC Goals for Advanced Batteries for PHEV's

Requirements of End of Life Energy Storage Systems for PHEVs

Characteristics at E OL (E nd of Life)		High Power/Energy Ratio Battery	High Energy/Power Ratio Battery
Reference Equivalent Electric Range	miles	10	40
Peak Pulse Discharge Power - 2 Sec / 10 Sec	kW	50 / 45	46 / 38
Peak Regen Pulse Power (10 sec)	kW	30	25
A vailable Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
A vailable Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trip Energy Efficiency (US ABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 35°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80
Maximum Operating Voltage	Vdc	400	400
Minimum Operating Voltage	Vdc	>0.55 x V max	>0.55 x Vmax
Maximum Self-discharge	Wh/day	50	50
S ys tem Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
U nassisted Operating & Charging Temperature Range	*c	-30 to +52	-30 to +52
Survival Temperature Range	*C	-4m€ to +mm	-4ń tn +ńń
M aximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

 Traditional electrochemical model yield slow-running multidimensional electrochemical/thermal models

Electrode thickness, electrochemical model parameters chosen to represent PHEV-type cell

Johnson Controls/Saft

Valence Technologies

A123 Systems

Saft VL41M

- Graphite-based anode
- Nickel oxide-based cathode

Nominal Capacity: 41 Ah
Nominal Voltage: 3.6 V
Mass: 1.07 kg
Power Density: 794 W/kg

Max. Continuous

Current: 150A (3.7C) Max. Peak Current: 300A (7.3 C)

Source: www.saftbatteries.com

Cell design: What shape and size best meet thermal requirements?

For a fixed capacity (electrode volume), surface area can be increased via:

- D/H ratio
- multiple cells in parallel (#P)

Usage profiles

Two cases explored in this presentation:

Moderate Thermal Condition

Severe Thermal Condition

150A Discharge Case (Transient Results

- D/H = ½
 h = 15 W/m²K
- $T_{amb} = 35^{\circ}C$

Movie of

- current imbalance
- temperature imbalance

NREL National Renewable Energy Laboratory

150A Single Discharge (at End):

D/H = $\frac{1}{4}$ h = 15 W/m²K T_{amb} = 35°C

Moderate usage + Air convection = small internal gradients

200A Geometric Cycling

D/H =
$$\frac{1}{4}$$

h = 150 W/m²K
T_{amb} = 35°C

At Steady State

200A Geometric Cycle (Steady-State)

- $D/H = \frac{1}{4}$
- $h = 150 \text{ W/m}^2\text{K}$
- $T_{amb} = 35^{\circ}C$

Severe usage + liquid cooling = large internal gradients

200A Geometric Cycle (Steady-State):

h = 150 W/m²K
 T_{amb} = 35°C

Internal Temperature Difference

- D/H ratio ~4.5°C ↑
- 2P ~6.0°C, 3P ~9.0°C ↓

- Under severe usage, low D/H and/or >1P designs significantly reduce thermal stress
- The impacts of D/H aspect ratio and cell size on the internal temperature difference were quantified using multidimensional electrochemical cell model

Conclusions

Multi-Dimensional Cell model (MSMD model) was Developed

- e.g.) Modeling Approach: Axisymmetric Thermal Model + SVM
 - Runs ~1.75 faster than real time
 - Practical engineering tool for applications such as:
 - Cell design
 - Determination of safe operating limits

The Model Capability was Demonstrated

- e.g.) Numerical investigation of 41 Ah cell
 - Under moderate usage
 - Internal temperature difference is very small (< 3°C).
 - Under severe usage,
 - Large internal temperature imbalance (>20°C) leads to significant reaction current imbalance (±10%).
 - Proper choice of aspect ratio and cell size can greatly reduce thermal stress.
 - Large convection (such as liquid cooling) lowers average temperature, but causes greater internal imbalance.

Future Work

- Explore thermal imbalance at low temperatures including possible impact on operating limits
- Extend to 3-D
- Include detailed internal structure of actual cells (current paths, ...)
 - External shorts
- Develop modeling tools for safe cell design
 - Internal shorts & defects

Acknowledgements

NREL Energy Storage Systems Task

Ahmad Pesaran, Team Lead

Programmatic Support from FreedomCAR and Vehicle Technologies Program at the US Department of Energy

- David Howell, Energy Storage Systems
- Tien Duong, Vehicle Technologies Team Lead

