

Innovation for Our Energy Future

Factors & Conditions for Widespread Use of Ultracapacitors in Automotive Applications

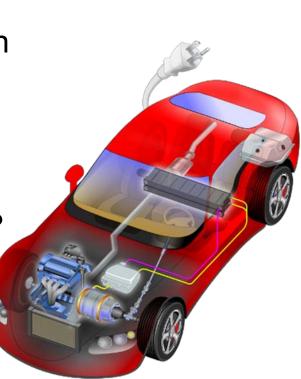
Ahmad Pesaran

(ahmad_pesaran@nrel.gov)

With input from Jeff Gonder and Aaron Brooker National Renewable Energy Laboratory

> Supported by Energy Storage Program Office of FreedomCAR and Vehicle Technologies Office of Energy Efficiency and Renewable Energy

NREL/PR-540-41969



U.S. Department of Energy

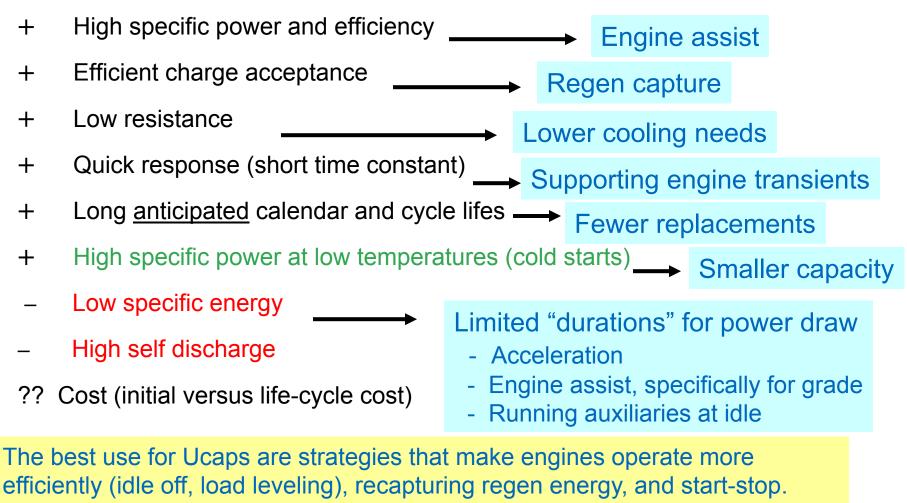
NREL is operated by Midwest Research Institute • Battelle

Content

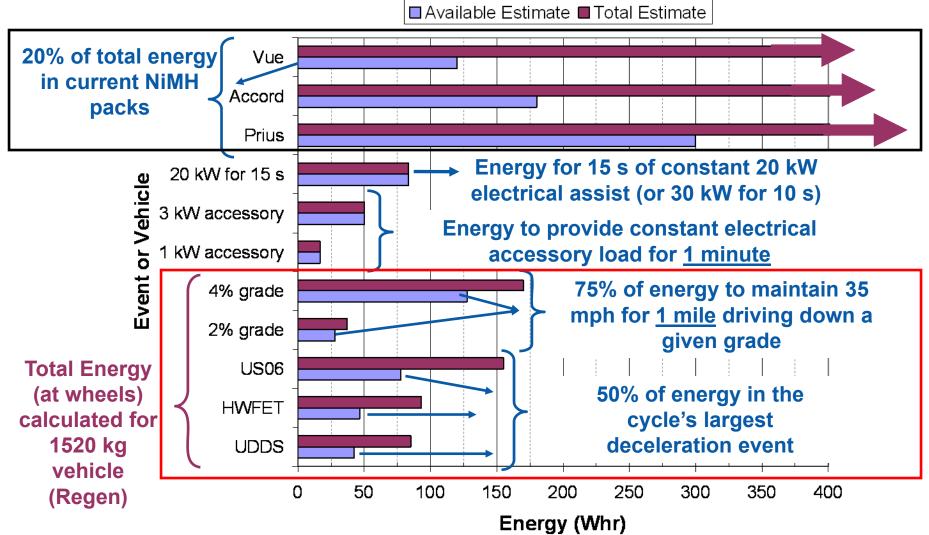
- Background
 - Potential ultracapacitor (Ucaps) functions in vehicles
 - Energy and power requirements of various HEVs
 - Hybrids with Ucaps
 - Start-stop vehicle fuel economy
- Simulations Impact of energy window on fuel economy of power assist hybrids
- Ucaps and Plug-in HEVs
- Suitability of Ucaps for different hybrid vehicles
- What would make the Ucap market grow?
- Fuel consumption considerations
- Concluding remarks

Background - Summary of Previous Work

- Rational for using Ucaps with electric drive
- How much energy is needed for various vehicle events/functions?
- Examples of prototype vehicles with Ucaps



Rationale for Using Ucaps with Electric Drive


Taking advantage of ultracapacitor's strengths (+) while minimizing impact of its weaknesses (-) if the COST was <u>comparable to batteries</u>

Advanced Capacitor World Summit 2007

REL National Renewable Energy Laboratory

Ucap is Energy Limited How Much Energy Is <u>Needed for Various Events</u>?

Cold-start capability is expected to dictate the size of batteries, but not for Ucaps.

5

Background - Light Duty Hybrids with Ucaps

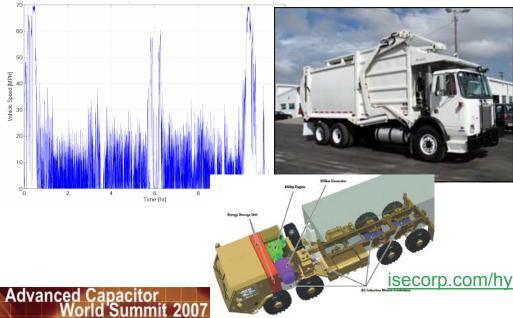
Honda Fuel Cell hybrid Vehicle (FCX-V4) Prototype

- H_2 Fuel Cell 78 kW Deg. of Hybr. = 0.26
- Motor/Ucap Power 28 kW
- Ucap functionality
 - Improve fuel cell/ vehicle's response
 - Recapturing regenerative braking
 - Energy for startup of the fuel cell
- Ucap available energy 80 Wh
- City/highway FE 62/51 miles per kg of H_2

BMW X3 Efficient Dynamics Mild Hybrid Concept

- 6-cyl engine 190kW Deg. of Hybr. = 0.16
- Motor 30kW (peak power 60kW)
- Start/Stop and regen functionality
- Ucap available energy 53 Wh
- Estimated 20% fuel economy increase

Supercaps (Asahi glass?)


Background - Heavy Duty Hybrids with Ucaps

Oshkosh's Hybrid Refuse Hauler

Demanding vehicle requirements

- 8 to 12 hours of continuous stop-and-go duty cycle
- Much higher traction / regen power
- Durability and reliability are musts
- 0.4 kWh and 200 kW ultracapacitors

greencarcongress.com/2006/11/oshkosh_truck_u.html)

ISE's Hybrid Transit Buses

ISE uses Two Ultracapacitor Packs

Spec of a Ucap Pack:

- Total Energy Stored: 0.407kWh
- 150 kW Power
- 4 Wh/kg Energy Density
- 1.5kW/kg Power Density
- Expected life 10-12 years
- System Cost : 100 \$/kW

NREL National Renewable Energy Laboratory

isecorp.com/hybrid_information_center/pdf/ultracapacitors_001.pdf

FreedomCAR/USABC Ucap Requirements

USCAR.org

System Attributes	12V Start-Stop (TSS)		42V Start-Stop (FSS)		42V Transient Power Assist (TPA)	
Discharge Pulse	4.2 kW	2s	6 kW	2s	13 kW	2s
Regenerative Pulse	N/A		N/A		8 kW	2s
Cold Cranking Pulse @ -30°C	4.2 kW	7 V Min.	8 kW	21 V Min.	8 kW	21 V Min.
Available Energy (CP @1kW)	15 Wh		30 Wh		60 Wh	
Recharge Rate (kW)	0.4 kW		2.4 kW		2.6 kW	
Cycle Life / Equiv. Road Miles	750k / 150,000 miles		750k / 150,000 miles		750k / 150,000 miles	
Calendar Life (Yrs)	15		15		15	
Self Discharge (72hr from Max. V)	<4%		<4%		<4%	
Selling Price (\$/system @ 100k/yr)	40		80		130	
Maximum System Weight (kg)	5		10		20	
Maximum System Volume (Liters)	4		8		16	
Energy Density (Wh/ILiter)	3.25		3.25		3.25	
Specific Power (W/kg)	840		600		650	
Selling Price (\$/Wh)	2.78		2.78		2.17	
Selling Price (\$/kW)	9.6		10		10	

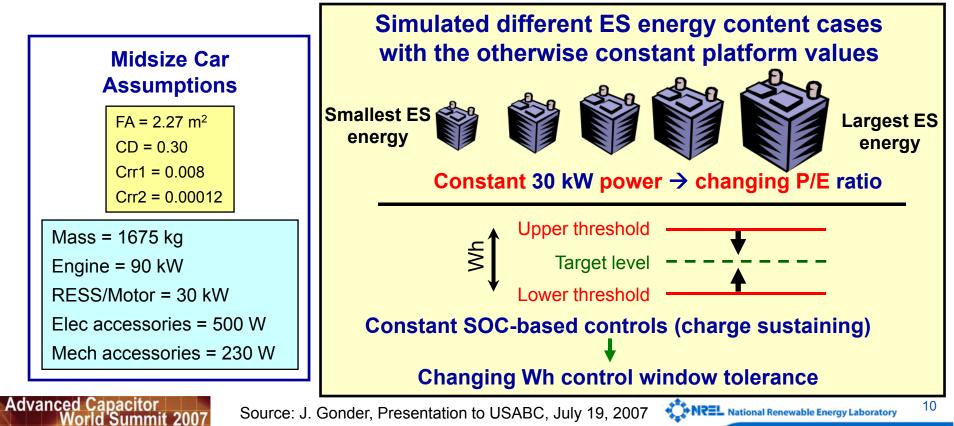


Vehicle Fuel Economy With Stop-Start (Idle-Off) Function

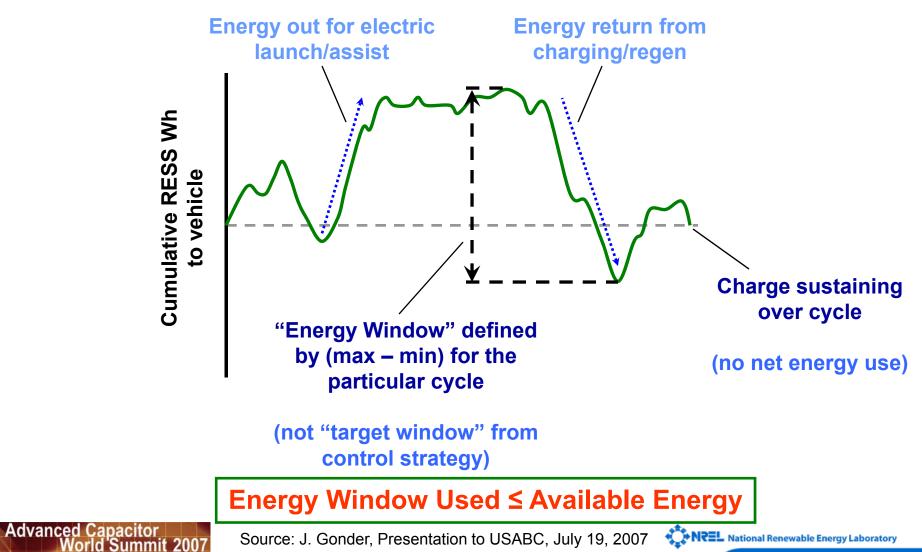
- Strongly depends on the fuel usage rate at idle
 - 0.2 g/s for a compact car, 4 cyl, 2.5L
 - 0.4 g/s for a midsize car like 2005 Chevy Malibu, 6 cyl, 3.5L
 - 0.48 g/s for a midsize truck like 2005 GMC Sierra, 8 cyl, 5.3L

Strongly depends on the drive cycle

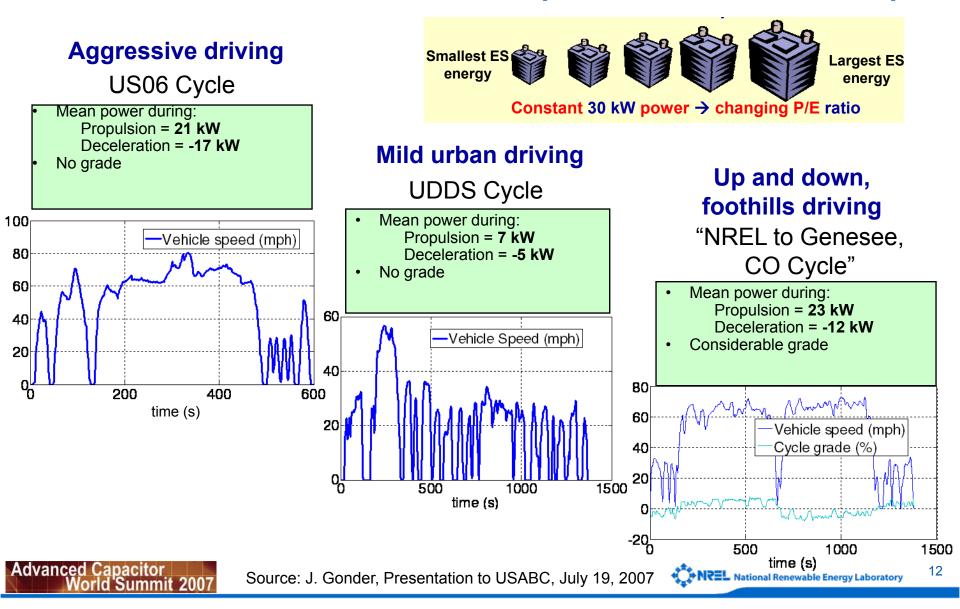
- City (a lot of stop and re-start)
- Highway (little chance of stop)
- US06 (some chance of stop)
- Maximum FTP fuel economy improvement with idle-off
 - 16% for 2005 Chevy Malibu, 6 cyl, 3.5 L
 - 14% for 2005 GMC Sierra, 8cyl, 5.3L
- Real fuel economy improvement with idle off



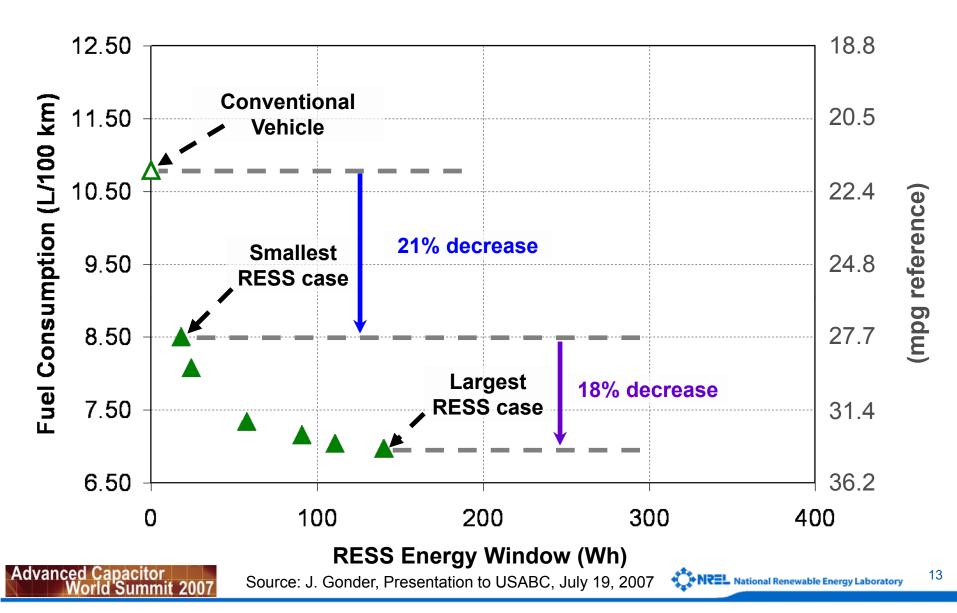
Source: Pesaran, et.al., "Ultracapacitors and Batteries in Hybrid Vehicles," Proceedings of the Advanced Capacitor Summit, 2005


Recent Analysis Impact of Energy Window on Power-Assist HEVs

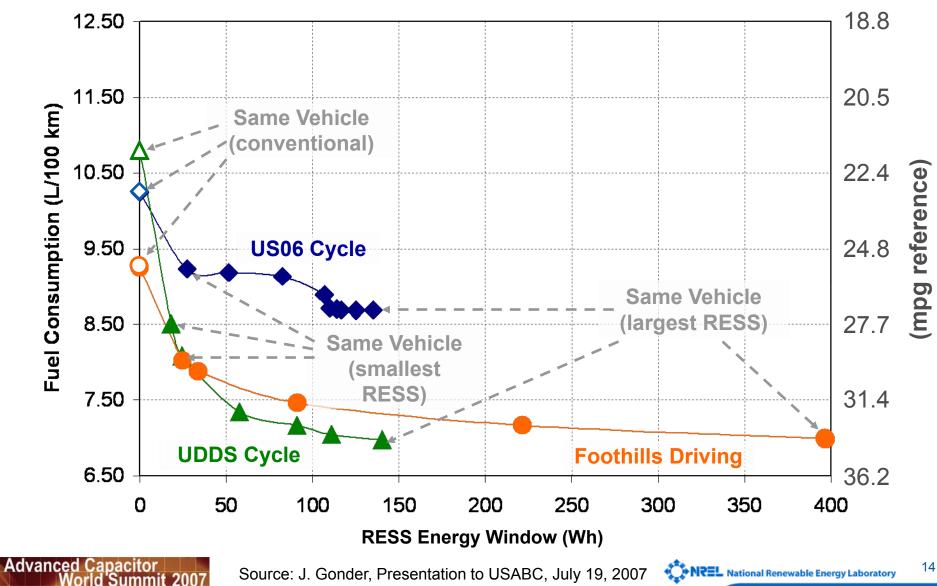
- Motivation: Investigate the relation between in-use energy window and fuel economy (a request from USABC/FreedomCAR)
- **Approach:** Simulate a midsize sedan with different component power levels and control settings for different drive cycles using PSAT analysis software

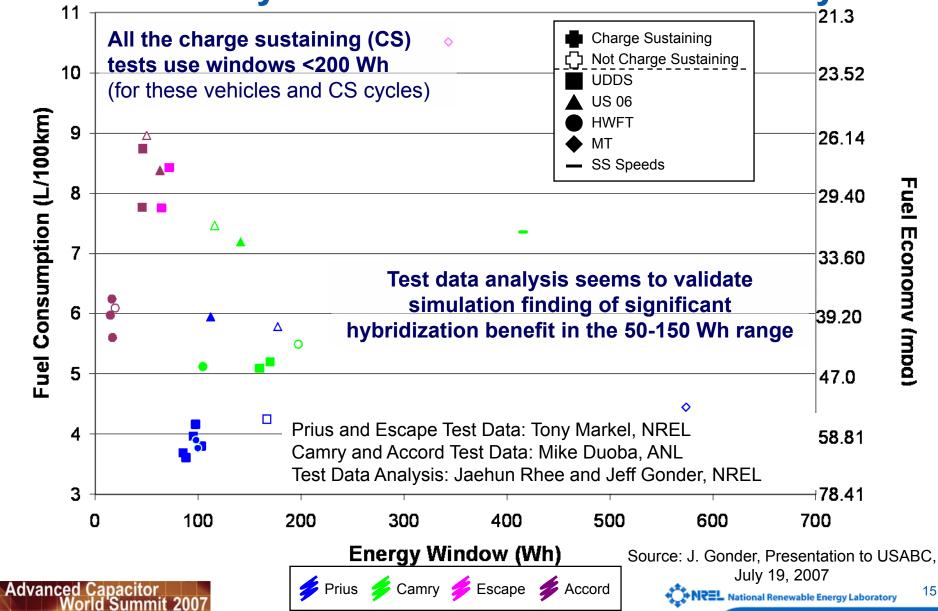

Definition of ES Energy Window Use (for a drive cycle or event)

RESS use indicated by slope of energy line



11


Three cycles simulated to observe energy window and fuel use (for each ES case)


On UDDS, large fuel savings from hybridization and from energy window expansion

Summary Results of ES Energy Window and Fuel Economy Simulations

Vehicle Test Results: Battery Energy Window for **Today's HEVs under Various Drive Cycles**

Fuel Economy (mpa)

15

Summary/Observations from HEV Energy Window Simulations

- Relative to the conventional, about half of the hybrid fuel saving is realized with 25-50 Wh energy window usage
- Most fuel savings are realized with 125-150 Wh energy window usage
- For better acceleration and passing-grade performance, higher energy window is needed: 300-400 Wh
- For a given ES energy window, vehicle fuel consumption is lower with higher power capability
- It is possible to use ultracapacitors (with available energy of 50-150 Whr) in power-assist HEVs with modest fuel economy improvements, however, acceleration and passing on grade performance considerations could be limiting factors.

Do Plug-in Hybrid Vehicles Provide an Opportunity for Ultracapacitors?

USABC Goals for Energy Storage in PHEV's Requirements of End of Life Energy Storage Systems for PHEVs

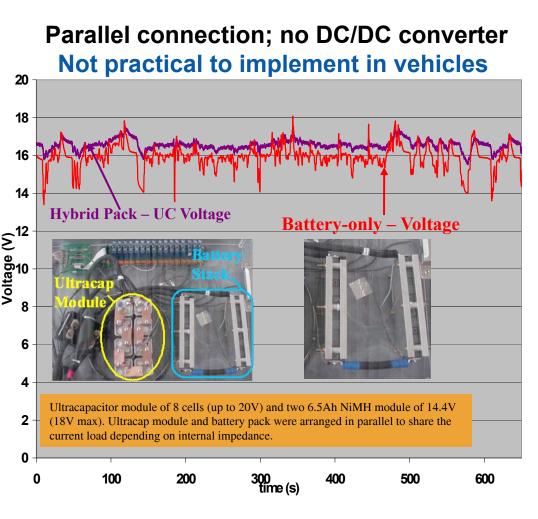
10-S pulse

power:

Cost: \$200-\$350/kWh_{total}

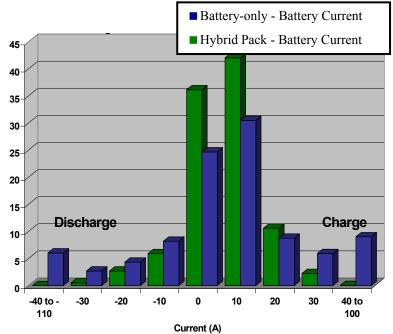
\$30-\$70/kW

Advanced Capacitor World Summit 2007


USCAR.org

25- 50 kW	Characteristics at EOL (End of Life)		High Power/Energy Ratio Battery	High Energy/Power Ratio Battery
	Reference Equivalent Electric Range	miles	10	40
	Peak Pulse Discharge Power - 2 Sec / 10 Sec	kW	50 / 45	46 / 38
Available 📐	Peak Regen Pulse Power (10 sec)	kW	30	25
onorgy:	Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
energy:	Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
-12 kWh	Minimum Round-trip Energy Efficiency (USABC HEV Cycle)	%	90	90
	Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
	CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
Number of	CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
	Calendar Life, 35°C	year	15	15
IEV cycles:	Maximum System Weight	kg	60	120
• • • • • • • • • • • • • • • • • • •	Maximum System Volume	Liter	40	80
300,000	Maximum Operating Voltage	Vdc	400	400
	Minimum Operating Voltage	Vdc	>0.55 x Vmax	>0.55 x Vmax
	Maximum Self-discharge	Wh/day	50	50
Calendar	System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
life:	Unassisted Operating & Charging Temperature Range	°C	- 30 to +52	-30 tn +52
15 years	Survival Temperature Range	°C	-46 to +66	-46 to +66
Cost:	Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

Common ultracapacitors do not have the energy for "charge depleting" operation of a PHEV, but their ability to cycle at high power rates many times and long calendar life provide the opportunity to be combined with high energy batteries.


NREL Tests Show that Combining Ultracapacitors with Batteries Could Filter High Voltage Transients

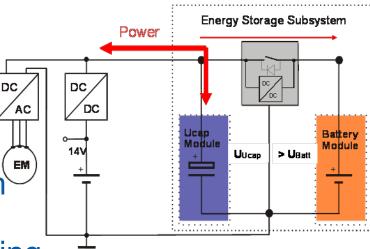
Source: M. Zolot (NREL Reports and 2003 Florida Capacitor Seminar)

Advanced Capacitor

World Summit 2007

- Overall, the batteries in the hybrid pack experienced no currents larger than ±40A, while the batteries in the traditional pack saw currents up to 110A.
- Up to 33% narrower battery SOC cycling range was observed; has the potential to increase battery life.

18


Advantages/Disadvantages of

Hybridizing Energy Storage (Ucap + Battery)

Advantages

Advanced Capacitor World Summit 2007

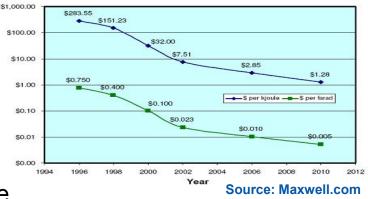
- Reduced battery currents
- Reduced battery cycling range
- Increased battery cycle/calendar life (to what extent?)
- Increased combined power and energy capabilities
- Lower cooling requirements
- Better low temperature performance
 Disadvantages
- Complex control strategy
- Larger volume & mass
- Need for electronics for each system
- Increased energy storage cost
- Unknown side affects of direct coupling
- Any need for DC/DC converters adds even more cost and complexity

Source: Continental ISAD, "New Energy Storage Concept," Proceedings of AABC-04

Summary- Technical Consideration

- Ucap applications match well to HEVs with Start-Stop strategies (small energy, high power)
 - <u>Idle-off</u> operation, potentially could increase standard EPA fuel economy of midsize truck by 14% and midsize car by 16%;
 - In real driving, idle-off strategy could improve fuel economy between 5% -10%
- Ucaps have potential in mild or full hybrids with some modest fuel economy improvements, but acceleration and passing-grade performance may be an issue
- Ucaps+batteries may have some applications in Mild HEVs, even full and plug-in hybrids
 - Increased cycle life of the battery by limiting high current excursions
 - Added cost and volume could be a major issue
 - If DC/DC needed cost increase may wash out battery life benefits
 - Other approaches?

What would pull ultracapacitors toward the market?


• Lower Cost

Advanced Capacitor

World Summit 2007

- Larger volume productions
- Lower materials cost
- Improved energy and power performance
- Ultracapacitor companies need to deliver quality, performance, life, and cost per requirements
- Use of commonly accepted definitions, specifications, and standards by both car and ultracapacitor companies
- Ultracapacitors are attractive relative to batteries for specific applications
 - cost/features
- Niche markets, so the industry begins to increase volume production to lower cost and improve performance
 - Does the heavy hybrid vehicles provide the transitioning market?

For example: 9000 Trash Haulers are produced each year. Assuming 40% of them will be hybrids with 400Wh Ucap Systems then the Ucap market size will be 0.5 million large cells/year

21

Renewable Energy Laboratory

What would <u>push</u> the market toward ultracapacitor?

The need for more fuel efficient and green vehicles

- Continued higher gasoline demand and prices
- Environmental and global warming concern (green movement)
- Hybridization becomes common
- Energy security (lower petroleum imports)
- Government regulations
 - Higher CAFE (fuel economy regulation)
 - » 27.5 mpg for cars, now
 - » 22.5 mpg for light trucks, now
 - Adoption of CO₂ regulation/tax
 - Tax incentives
 - Idle-off from heavy to light vehicles??
- But still, ultracapacitors must provide better value compared to Li-Ion batteries for some applications

→To combined 35 mpg in 2019*

*Proposed bill S. 357 in the 110th Congress

Potential High-Volume Applications of Ultracapacitors in Light-Duty HEVs VRLA: Yes Micro Hybrids - (12V-42V: Min energy needed NiMH and Li-Ion: Yes, LIKely Start-Stop, Launch Assist) 15-20 Wh Ucap: Likely Ucap + VRLA: Possible Mild Hybrids - (42V-150V: VRLA: Yes (42V) 20-60 Wh NiMH and Li-ion: Yes, Likely Micro HEV Function + Ucaps: Likely if engine is not downsized Regen) Ucaps + VRLA: Possible **Full Hybrids -** (150V-350V: VRLA: Not Likely 60-120 Wh NiMH and Li-ion: Yes, Likely Power Assist HEV) **Ucaps:** Possible Ucaps + (NiMH or Li-Ion): Possible VRLA: Not Likely **Fuel Cell Hybrids** 60-120 Wh NiMH and Li-ion: Yes, Likely Ucaps: Likely if Fuel Cell is not downsized Ucaps + (NiMH or Li-Ion): Possible VRLA: Not Likely **Plug-in HEV** 80-100 Wh* NiMH and Li-ion: Yes, Likely (some EV range) Ucaps or (Ucap + VRLA): Not Likely

Ucaps + Li-ion or NiMH Possible

Advanced Capacitor

World Summit 2007

Simple Market Analysis Example

- What are the overall size of automotive markets?
 - Light duty vehicles vs. heavy duty vehicles

Total # of LD vehicles sold in US in 2012: 18,000,000

• What is the potential market size for a particular application?

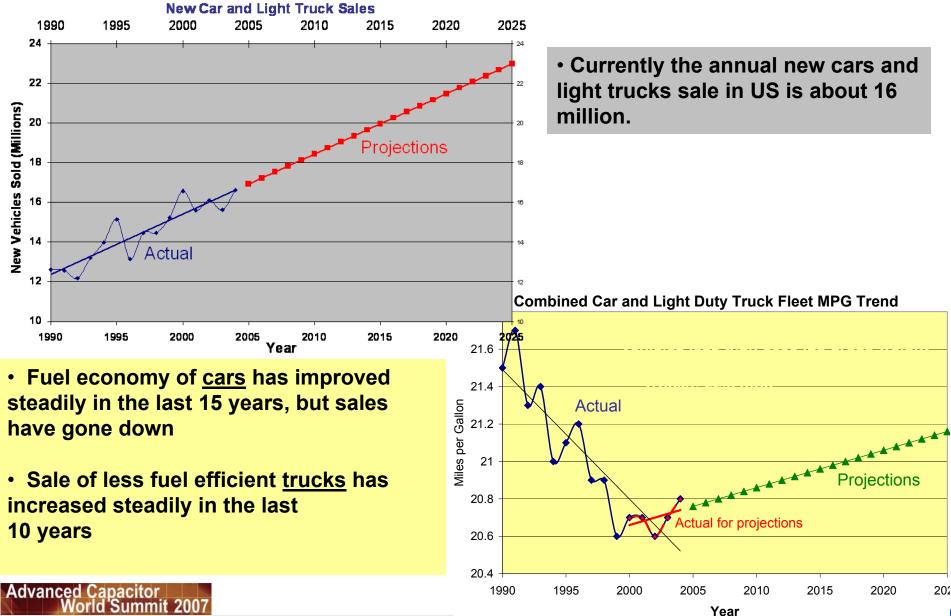
Mild hybrid market potential in 2012: 5% or 900,000

What portion of that market could use ultracapacitors?

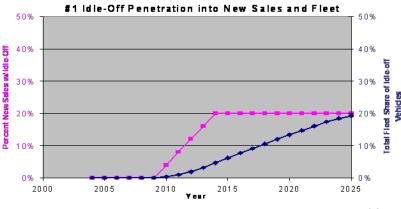
Battery Mild HEVs 80% (720,000)

Ultacapacitor Mild HEVs 20% (180,000)

• What ultracapacitor size is required in that vehicle market?

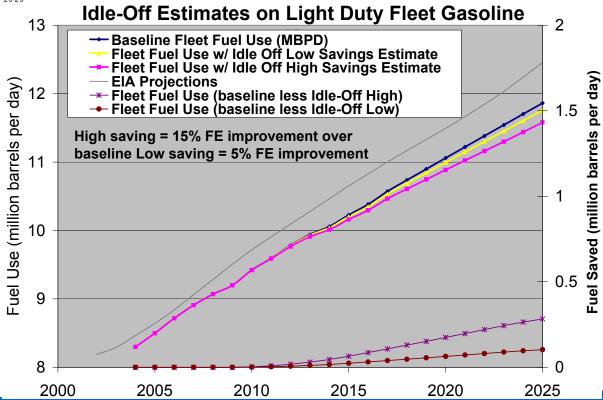

Available energy needed for Mild Hybrids: 80 Wh

What would be the total size of that particular market?
 Market size: 14 MWh; 6.8 Million cells (at 2.1 Wh/cell); \$72 Million (at \$5/Wh, \$10.5/cell)

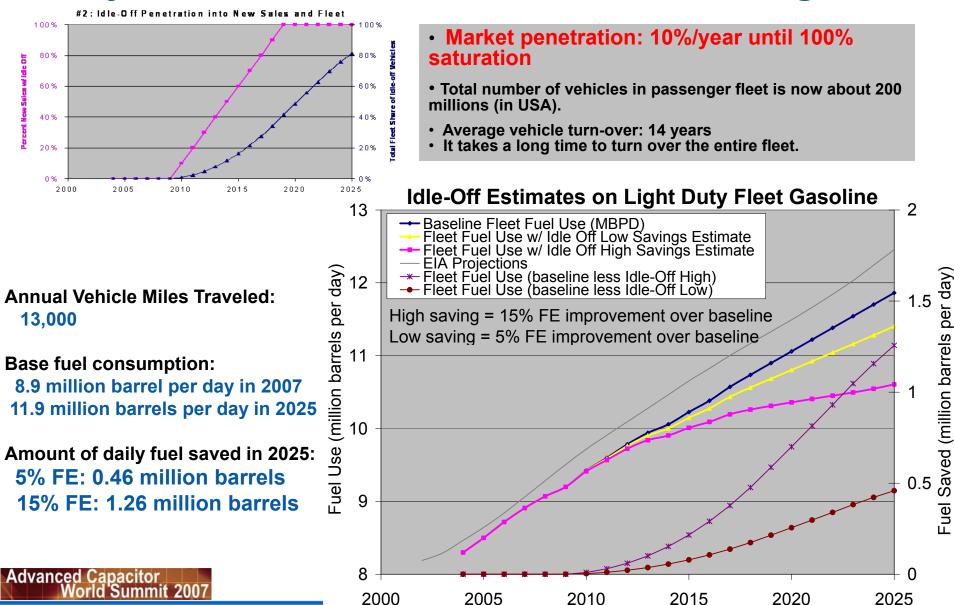


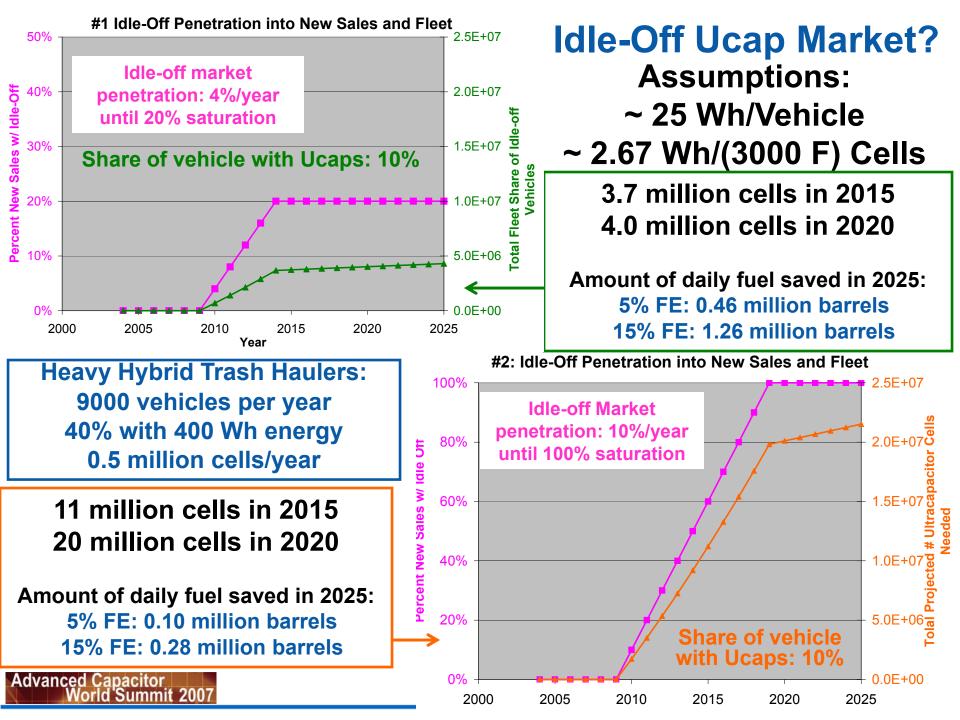
Light Duty Vehicle Market and Gasoline Consumption Considerations- Rough Estimates

Potential Impact of Penetration of Fuel Efficient Hybrid Vehicles – Scenario 1: Idle-off, market


Annual Vehicle Miles Traveled: 13,000

Base fuel consumption: 8.9 million barrel per day in 2007 11.9 million barrels per day in 2025


Amount of daily fuel saved in 2025: 5% FE: 0.10 million barrels 15% FE: 0.28 million barrels


Advanced Capacitor World Summit 2007

- Market penetration: 4%/year until 20% saturation
- Total number of vehicles in passenger fleet is now about 200 millions (in USA).
- Average vehicle turn-over: 14 years
- It takes a long time to turn over the entire fleet.

Potential Impact of Penetration of Fuel Efficient Hybrid Vehicles – Scenario 2: Idle-off, regulation

Concluding Remarks

- Ultracapacitors provide opportunity for modest fuel savings in hybrid cars
 - Idle-off: 5%-10% FE improvement and most likely to be implemented
 - Mild and full hybrid: 15%-25% FE improvement, possible
 - Plug-in hybrids: possible Ucap combined with batteries, cost??
- Competition from Li-Ion is strong and ultracapacitors should provide added value to compete
 - Low temp performance
 - Longer cycle and calendar life
- Lower cost is the key for increased automotive market growth
 - Large volume production will reduce cost
- Idle-off provides the biggest opportunity for Ucaps in the short term, especially if it is accelerated by CAFÉ standard increases being considered by Congress
 - Large number of idle-off vehicles require high volume production resulting in lower Upcap cost

Acknowledgements

- Support provided by FreedomCAR and Vehicle Technologies Program at the US Department of Energy
 - Tien Duong, Vehicle Technologies Team Lead
 - David Howell, Energy Storage Technology Manager

- Technical Insight from USABC Members
 - Cyrus Ashtinai, DCX
 - Franco Leonardi, Ford
 - Harshad Tataria, GM

nrel.gov/vehiclesandfuels/energystorage/publications.html

