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NREL’s Plug-in Hybrid R&D Activities

Battery Level
— R&D support to developers
— Testing and evaluation — Sprinter PHEV testing
— Thermal characterization and design
— Requirement analysis in support of EES Tech Team

Vehicle Level
— Simulated real-world PHEV fuel economy
—  Support development of test procedures and MPG
reporting
— Route-based control
— PHEV design cost-benefit analysis
Utility Level
— Assessment of PHEV impacts on utilities
— Exploring synergies between PHEVs and wind
power
— V2G opportunities for PHEVs in regulation services
National Level
— Benefits assessment - oil use and emissions
— Renewable community — linking PHEV to
homes/communities
Analysis support to DOE, OEMs, and others

— Working to identify and overcome barriers to PHEV
adoption

4’!“‘"&!— National Renewable Energy Laboratory




NREL’s Heavy Hybrid Vehicle Activities

 Technical Monitor of DOE’s Advanced

Heavy Hybrid Propulsion System Program

» Technical Contributions Ref"ff;:sb

GM - Allison Transmission (Heavy hybrid i @ i
transit bus application & orototype validation) — ===
parallel hybrid o
Eaton/International (Class 4-6 vehicle
applications & prototype validations) — parallel
hybrid

Oshkosh (Class 7-8 vehicle application &
prototype validation) — Series hybrid; extremely
demanding duty-cycle

Caterpillar (Focus on thermoelectric waste
heat recovery)

ReFUEL Lab (Chassis and engine Labora
dynamometers)
» Vehicle fuel economy and emissions testing
» Vehicle drive cycle characterization and analysis
Thermal testing, analysis, and management
» Power electronics
» Batteries and ultracapacitors
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Topics of This Presentation

- Battery Technologies for PHEVs
— State-of-the-art
— Advances

* Impact of Vehicle Attributes on Battery
— EV Range
— System Architecture
— Driving cycles and profiles

« Concluding Remarks




Key Messages

* There is a broad spectrum of PHEV designs leading to different battery
requirements

- Batteries are available that could meet the energy and power demands for
PHEVs, but cost and limited cycle/calendar life are major barriers for affordable

PHEYV introduction:
- NiMH could do the job — volume and weight are concerns
- Li-ion are potentially best candidates
- All li-ions are not “created equal”

* For heavy-duty PHEV, combining low-cost, high-energy batteries (such as
NaNiCl or ZnAir) with high power ultracapacitors may have potential

» There is a trade of between high fuel economy and emissions benefits
- Engine-off during EV operation reduces the petroleum consumption
- Too many engine-off cycles lead to cold starts and higher emissions

 PHEVs are the most-cost-effective choice in a scenario of projected low battery
costs and high fuel costs.

*
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Batteries in Current PHEVs

Li-lon

Co/Ni based

Kokam

Iron phosphate
based Li-lon

A123 Systems
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High Power Battery and Ultracapacitor

Characteristics
Parameter VRLA NiMH Li lon Ultracap
Parallel plates;, | Spirally wound Spirally wound | Spirally wound
Cell configuration spirally wound | cylindrical; parallel cylindrical & cylindrical &
cylindrical plates elliptic elliptic
Nominal cell voltage (V) 2 1.2 3.6 1.8
Battery electrolyte Acid Alkaline Organic Organic
Specific energy, Whikg 25 40 60 to 80 3]
Battery/Module specific power, 10
sec, Wikg
23°C, 50% SOC 400 | 1300 | 3000 | >3000
-20°C, 50% SOC 250 \ 250 \ 400 \ >500
Charge acceptance, 10 sec. W/kg
23°C, 50% S0C 200 ‘ 1200 ‘ 2000 ‘ >3000
2010 Projected Cost >100,000 per
year
$/kWh, Module 100.00 500.00 \ 700.00\ 20,000.00
$/kWh, Full pack i 140 i 600 i 1100 " 25000
$/kW, pack 9.00 18.00 22.00 40.00
Energy efficiency Good Moderate Good Very Good
Thermal managements Moderate High Moderate Light
requirements
Electrical control Light Light Tight Tight
Source: M. Anderman, AABC-04 Tutorial, San Francisco, CA June 2004 ‘i:f‘N?E!- National Renewable Energy Laboratory




Qualitative Comparison of Existing Energy
Battery Technologies for PHEVs

B
L

Attribute Lead Acid
Weight (kg)

Volume (lit)

Capacity/Energy (kWh)

Key Discharge Power (kW)

Regen Power (kW)

Fair Cold-Temperature (kWh & kW)

Shallow Cycle Life (number)

Deep Cycle Life (number)

Calendar Life (years)

Cost ($/kW or $/kWh)

Safety- Abuse Tolerance

Maturity - Technology

Maturity - Manufacturing

%‘“E‘- National Renewable Energy Laboratory
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NiMH has Matured in Power and Energy

Specific energy ranging from 45 Wh/kg to 80 Wh/kg depending on the
power capability.

20001 - : . 1
2 ial
1800 Perfcf:;:‘;;flc-; :::}enports a 005 Cs Commercia =
1600 o Lo ® Ovonic
; m
1400+ Prewous: 2003 C, . o
Commercial &Commercial
1200+ Hybrid Vehicles \ (Cobalt)

P |
10001 V‘Q ® ™= tiion -/

SPECIFIC POWER (W/kg)

gool OnFOeT prilmsphare: # Panasonic EV
1997 -
S \ - < Patent
4001
200 35°C, 50% SOC
High Energy 10C, 10 second pulse e
0 } } } } : ! : M
Y A 4l 69 80 100 120 140 95 Ah EV module
SPECIFIC ENERGY (Wh/kg) used in Toyota RAV 4

Source: Reproduced from A. Fetcenko (Ovonic Battery Company) from the 23" International Battery Seminar & Exhibit, March
13-16, 2006, Ft. Lauderdale, FL.
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NiMH technology is forecasted to have a major market
share in hybrid market until Li-lon takes off

Panasonic
g " HEV BATTERY Market, M US$,
Worldwide, 2005-2015
j Electro Ener
5000 Forecast gy
5000 1§ : n |
4000 11 % : el :
prm— A
i ,'n,nﬂnﬁ . - || Pack with bipolar Cells/Modules
00 1+ PP 1 _____ i - g T : -
[Eovivimmen) = atiion | || I = ;
2000 — HHHHH
e — e 1000 I HHHHF
6.5 Ah HEV cells in Ford Escape HEV H
Source: Sanyo website news 0 [] |_|
o D v Wb Wb Wb B ' ' - '
Cobasys mﬁﬁ $ @ ngﬁg, mh, mﬁnﬁ,wﬁs, ﬁﬂ,{ﬁ Bipolar pack in a F.’Iug In Prius
Source: Images provided by James
ONMHE O Lrion Landi of Electro Energy Inc.

Source: C. Pillot (Avicenne) from the 23
International Battery Seminar & Exhibit,
March 13-16, 2006, Ft. Lauderdale, FL.

EV module (left) and 42V HEV batteries
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Li-lon Technology — Diverse Chemistry &

Opportunity

C[Jischarging)

Currant

Lithium ion Electrolyta Lithium ion

Voltage ~3.2-3.8 V
Cycle life ~1000-3000
Whl/kg >150

Wh/I >400

Discharge -30 to 60°C
Shelf life <10%l/year

Many anodes are possible
Carbon/Graphite
Titanate (Li TizO4,)
Titanium oxide based
Tin Oxide based
Tungsten oxide

Many electrolytes are possible
LiPF4 based
LiBF, based
Various solid state electrolytes
Polymer electrolytes
(+ some salts)

Many cathodes are possible
Cobalt oxide
Manganese oxide
Mixed oxides with Nickel
Iron phosphate
Vanadium oxide based

Source: Robert M. Spotnitz, Battery Design LLC, “Advanced EV and HEV Batteries,” 2005 IEEE Vehicle Power and
11 Propulsion Conference, September 7-9, 2005, IIT, Chicago, IL
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Characteristics of Cathode Materials

Theoretical values for a battery system relative to graphite anode and LiPF electrolyte

Material Ax mAhlg avgV Wh/kg Whil
LiCoO, 055 151 4.00 602 3073
LiNipgC0g1sAlgosO, 0.7 195 3.80 742 3784
LiMn,O, 08 119 405 480 2065
LiMn,3Co,5Ni;s0, 055 153 3.85 588 2912
LiFePO, 095 161 3.40 549 1976

*Typically diluted with 10% carbon for electronic conductivity

» Cobalt oxide most widely used in consumer cells but recently too expensive
* LiMn,,;Co,,5Ni; 30, newer than LiNiCoO,
* Mn,0O, around for many years — not competitive for consumer — good for high power
» Oxide cathodes with cobalt are more energetic
* LiFePO, — very new — too low energy density for consumer electronics
- safe on overcharge but need electronics to prevent under-voltage

- may require larger number of cells due to lower cell voltage

Source Robert M. Spotnitz, Battery Design LLC, “Advanced EV and HEV Batteries,” 2005 IEEE Vehicle Power and

PropuIS|on Conference, September 7-9, 2005, IIT, Chicago, IL 4 @ NREL National Renewable Energy Laboratory
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Many Commercial Oxide Based Li-lon
Batteries are Available

« Johnson Control - Saft
LG Chem

* Electrovaya

« Kokam

« SK Corp

« NEC Lamilion Energy
* GS Yuasa

e Sony

« Sanyo

e Samsung

« Panasonic

* Nissan

 Lishen

* Pionics

 Altair Nanotechnologies
* Chinese companies

13
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Lithium Iron Phosphate (LiFePO,) Cathodes

Discharge Performance for U-Charge U1-12XP Power System
23°¢C

ﬁb/
/

+ High stability and non-toxic =
+ Good specific capacity
+ Flat voltage profile

+ Cost effective (less expensive cathode) =

K

B

Battery Yoltage (V)

b

+ Improved safety |
— Lower voltage than other cathodes DS et

. . . ource: On line procnures rrom Vvalence ecnnolo
— Poor L| dlfoSIOﬂ (DLi~ 1013 sz/SeC) http://www.valence.com/ucharge.asp

— Poor electronic conductivity (~ 10 S/cm)

« Approach many use to overcome poor characteristics
— Use nano LiFePO, — carbon composite
— Use larger number of cells
— Nano structured materials

Source: Various papers from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.

ot
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Improvements in Iron Phosphate
Li-lon Batteries

Valence Technology 18650 Cells
100 Wh/kg in cell 84 Wh/kg in U Charge module| vai=z-

The battery with standard lead acid battery form
factor includes a battery management system.

Specifications UI1-12XP U24-12XF
128V 128w
Capscity (/5] 40 Ah 100 &h
Specific ensrgy B4 Wh/kg 82 Whe'kg
Snergy density 110 W, 128 Whyl
Max, cont. current 20 A 1504
Standard Wax. 30 sec. pulse 12004 3004
Cizcharge
Cut-o™ voltage 10 10w

Source: 2006 On line brochures from Valence
Technology, http://www.valence.com/ucharge.asp

Weight to

Life at

200

Power Density discharge Safety 100% DoD Environmental :‘mu“"-u...._,... — —
(<aAh ov cells) ) . . .
’ @1500W iC rate " —— :
1 %
3600 W/Kg 0.9 lbs v ~7000 v g i Il 1
capacy
Based on: Novel nano scale doped phosphate active materials (pat. pending) B
Low impedance cell design and electrolyte (pat. pending) é
LLU
A123 Systems
Wlth 26650 Cel Is i H;UU 2!‘“0 ‘Jt;’.‘U W’U'.‘ 'J-';UU D‘.IWJ ”;JU UL".'.‘

100 Wh/kg

Source: Andrew Chu (A123 Systems) from the 23rd International Battery
15 Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.

Cycli nunbar
100%DOD 1€ charge, 1€ discharge eyeling data,
Using first tonn eyeles, extrapolated eyele Tfes <7000 eyeles,
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Improving Li-lon Batteries with Titanate Anode

Traditional

Characteristic LT Bvievies

li Ton Batteries
Using
Altairnano materials

100

B0

Clectrode Materials

Anode Graphite

Cathode Cobaltate
Performance

Charge rate 1 C

Discharge rate 4 C

Cycle lite 300-500 cycles

Calendar life 2-3 years

Lithium titanate spinel
Nano-Structured oxides

20 C and greater

40 C and greater
9,000 cycles (full DOD)
10-15 years

™

R

kil

%, Room Temperature 1C Capacity

Altaire Nanotechnologies Inc.

Improved low temperature : "
performance :
Faster charge acceptance

Longer cycle life
80-100 Wh/kg
2000-4000 W/kg

100

80

€ Rate

\\-‘ [ to 10C Charge. 1C Discharge | _‘\\“
5
o =—#—Room Temperature ‘\\\
- 307 \
a e —
Fegion ef Relative Capacity T
20 Frpected Fram (iiher Rattery __--—__‘—‘-
/ Types Charged [ Discharge

", = at-30°C and 1C Rate
Add

e T T T T T T T

1 i 3 4 3 & T 8 ie

~90% SOC of RT Cell at -30°C and 1-2C Charge Rate!

T (> minule) Charge | Dlschargs Rate |

—a—Convantional L
—a—FIit

—m—Altalrmano's LI-

<3000 Cyclas

I-lan

BO% Frash Capacit

.

Charga / Dlecharge

To
Q

1000 2000 3000 4000 5000 E000 TOOD BOOD 3000 1000 1100 1200 1300 1400 1500 100

Source: E. House (Altair Nanotechnologies) from the 23
International Battery Seminar & Exhibit, March 13-16, 2006,

Ft. Lauderdale, FL.
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Exciting Times for Li-lon Batteries

17

* New Cathodes
— Lower cost
— Higher power y I
— Better safety A0 o
— Improved life

« New Anodes |
— Faster charge rate Main barrier

— Improved life

« New Electrolyte IS cost!

— Improved safety
— Improved low temperature performance
* New Separator

— Lower cost
— Improved safety

ot
« ‘.*HE'_ National Renewable Energy Laboratory




Other Energy Storage Potential Choices for
Plug-In Hybrid Electric Trucks (PHET)

« Sodium Nickel Chloride battery (NaNiCl) — Zebra

— High energy density
— Low power density
— Inexpensive

 Zinc Air battery/fuel cell (ZnAir)
— Types
» The “Refuellable” ZnAir Fuel Cell

» The “Mechanically Rechargeable” ZnAir Fuel Cell
» The Electrically Rechargeable ZnAir Battery

— High energy density
— Low power density
— Inexpensive
 Ultracapacitors
— High power density
— Low energy density
— Expensive now, could become lower in cost
« Combination of ultracapacitors with NaNiCl or ZnAir
— The need for DC/DC converter may increase cost, volume/mass

18
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Battery Cycle Life Depends on
State of Charge Swing

« PHEV battery likely to deep-cycle each day driven: 15 yrs equates to 4000-5000 deep cycles
 Also need to consider combination of high and low frequency cycling

120%

Need to obtain similar data
y=1571" y=1515¢°¢  for state-of-the-art batteries

100% :
- 40,7671 . NIM H
y=18,889x"
80%

0% \\\ I Lidon

¢ Pb flooded : . Lead-Acid
- © i N - AGM / Gel

40% +—{ A Li-lon

- \ i \ g Lead-Acid
Potentiell (Pb AGM) A ! _
20% +— = Potentiell (Pb flooded) : flooded
—— Potentiell (Li-lon) \'\giﬁ \%ﬁ

( I

= Potentiell (NiMH)
1 10 100 1.000 I 10.000 100.000 1.000.000
cycles 4000

y =14,84x"%°

SOC Swing / %
S 2
S

0%

Source: Christian Rosenkranz (Johnson Controls) at EVS 20, Long Beach, CA, November 15-19, 2003

ot
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Battery Sizing Depends on:

EV range, vehicle (mass, aerodynamic, etc.), drive cycle, strategy

mass compounding

Equi EV range -----------------=--owmmoeemeeeoeo , Benefit of
\ plugging-in

!?Wh_/”l\if T kWh usable

SOC window — kWh total Total MPG Benefit

ka-otor | > P/E

(from simulation) \ \ DOH ______ i Benefit Of

Performance el hybridization

constraints " KWengine

DOH = degree of hybridization

Source: Tony Markel and Andrew Simpson, Milestone Report, National Renewable Energy Laboratory,
20  Golden, CO, September 2005. .f.::..“E._ National Henewable Eneray Laborat
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Battery Usage in EVs, HEVs, and PHEVs

0.2-0.4 kWh CS
1-2 kWh total ——"—+

HEV
Used frequently in CS Used sometimes in CS
| 0.2-0.4 kWh CS
8 5-10 kWh
|_
O PHEV Charged and
9O used (CD)
o
>
30-40 kWh
Charged and
used (CD)
0 10 20 30 40 50 60 70 80 90 100
kWh: Battery energy for midsize car SOC Range (%)
21 CS: Charge Sustaining CD: Charge Depleting S 3 NREL Nationai Renewabie Energy Laboratory




Alternative PHEV Design Strategies:
Charge Depleting EV vs. Charge Depleting HEV

« Engine turns on when battery reaches low state of charge
* Requires high power battery and motor

Charge-Depleting EV (All-Electric)

70 = 100%
——engine
60 N——————————————— motor 90%
. [—s0cC
50 o Charge depleting — 80%
] \ (motor only) Charge sustaining
40 n - ; + 70%
g 2 5 - T — L 60% __
X ra r P s 2
& 20 - D0%
: g | :
10 , 40%
0 + ; Sira Ry Ty S0k
_10_ ; if,l & é ..: . e :E i: ' e i :;JI ' 'I E {I: e I ;_ 20%
-20 10%
-30 0%
0 ) 10 15 20 25 30 35 40
22 Distance (ml) ﬁ“‘*HEL National Renewable Energy Laboratory

Source: Tony Markel anq AnQreW Simpson (NRE_), AA_BC-06, wmore, MP, May 19, 2006"' A




Alternative PHEV Design Strategies:
Charge Depleting EV vs. Charge Depleting HEV

« Engine turns on when power exceeds battery power capability
« Engine only provides load that exceeds battery power capability

o Charge Depleting HEV (B[ended) o0
: —engine

60 ..~ — motor 90%

80%

\ 4

- 70%

- 60%

- 50%

SOC (%)

40%

30%

- 20%

-20 10%

-30 0%
0 ) 10 15 20 25 30 35 40
Distance (mi) e
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Example of Battery Requirements for Plug-in
Hybrid Vehicles

24

Characteristics at EOL (End of Life)

£  |Maximum System Production Price @ 100k units/yr $
% Calendar Life, 40°C year
E Maximum System Weight kg
% Maximum System Volume Liter
SOC Range %
2 |Relerence Equivalent Eleciric Range miles
g § Available Energy lor CD Mode, 10 KW Rale KWh
8 2 |CD Life / Discharge Throughput Cycles/MWh
5 % Suggested Total Energy (at 10 KW rate) lkWh
g Maximum System Recharge Rate at 30°C kW
. Pcak Pulsc Discharge Power (10 sce) kW
E Peak Regen Pulse Power (10 sec) kW
{% § Available Energy for CS (Charge Sustaining) Mode kWh
g > Minimum Round-trip Energy Efficiency (USABC HEV Cycle) 2o
I[S‘ﬁ L |Cold cranking power at -30°C., 2 sec - 3 Pulses KW
CS HEV Cycle Life, 50 Wh Profile Cvcles
Max. Currcnt (10 scc pulsc) A
.-Eo Maximum Operating Voltage Vidc
3 | Minumum Operating Voltage Vde
7 |Maximum Sclt-discharge Wh/day
§ Survival Temperature Range “C
Unassisted Opcerating & Charging ‘T'empcerature Range “C

e —
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Battery Energy Requirements for Heavy-Duty PHET

* The energy efficiency of light-duty vehicles are about 200 to
400 Whr/mile
— 5 to 12 kWhr battery for 30 mile
— 2 Second power: 30 to 60 kW
— Power to energy ratio (P/E) from 2 to 15

« Sprinter van delivery PHEV is estimated to consume about
600 Whr/mile in charge depleting (CD) mode

« Heavy-duty trucks could consume from 1000 to 2000

Whr/mile
— 30 to 60 kWh battery for 30 mile range
— Some may require additional kWh energy during idling or
vocational operation
— Power need: 50 to 150 kW or even more
— Volume, weight, and cost are big issues
— Thermal management is a concern

oo -
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Battery Pack Packaging?

 Many small cells
— Low cell cost (commodity market) g MSInLTIS
— Improved safety (faster heat rejection) EY- Y- ¥
— Many interconnects )
— Low weight and volume efficiency
— Reliability (many components, but some redundancy)
— Higher assembly cost
— Electrical management (costly)
— Life?

* Fewer large cells
— Higher cost
— Increased reliability
— Lower assembly cost
— Higher weight and volume efficiency
— Thermal management (tougher)
— Safety ?77?
— Better Reliability (lower number of components)
— Life?

26
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Concluding Remarks

27

 Batteries with low power to energy ratios are needed for
PHEVs and PHETSs

« Widening of the energy storage system usable state of
charge window while maintaining life will be critical for
reducing system cost and volume, but could decrease the
life

* A blended operating strategy as opposed to an all electric
range focused strategy may provide some benefit in
reducing cost and volume while maintaining petroleum
consumption benefits

* The key barrier to commercialization of PHEVs and
PHETSs are battery life, packaging, and cost.

oo o
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