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Abstract 
 
Battery thermal management is critical in achieving performance and extended life of batteries in 
electric and hybrid vehicles under real driving conditions. Appropriate modeling for predicting 
thermal behavior of battery systems in vehicles helps to make decisions for improved design and 
shortens the development process. For this paper, we looked at the impact of cooling strategies 
with air and both direct and indirect liquid cooling. The simplicity of an air battery cooling 
system is an advantage over a liquid coolant system. In addition to lower heat transfer coefficient, 
the disadvantage of air cooling is that the small heat capacity of air makes it difficult to 
accomplish temperature uniformity inside a cell or between cells in a module. Liquid cooling 
systems are more effective in heat transfer and take up less volume, but the added complexity and 
cost may outweigh the merits. Surface heat transfer coefficient, h, and the blower power for air 
cooling are sensitive to the hydraulic diameter of the channel (Dh). However, because of the 
added thermal resistances, h evaluated at cell surface is not as sensitive to the variation of Dh in a 
water/glycol jacket cooling system. Due to the high heat transfer coefficient at small Dh and large 
coolant flow rate, direct liquid cooling using dielectric mineral oil may be preferred in spite of 
high pressure loss in certain circumstances such as in highly transient large heat generating 
battery systems. Results of computational fluid dynamics (CFD) model simulation imply that 
capturing the internal heat flow paths and thermal resistances inside a cell using a sophisticated 
three-dimensional cell model are important for the improved prediction of cell/battery thermal 
behaviors. This paper identified analyses and approaches that engineers should consider when 
they design a battery thermal management system for vehicles.  
 
Introduction 
 
Temperature greatly affects the performance and life of batteries, so battery thermal control must 
be used in electric and plug-in hybrid electric vehicle under real driving conditions. In recent 
years, automakers and their battery suppliers have paid increased attention to battery thermal 
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management, especially with regard to life cycle and related warranty costs. A thermal 
management system could be designed with a range of methods, from “simple energy balance 
equations” to more “sophisticated thermal and computational fluid dynamics models.” Regardless 
of the method, the basic performance of the management system is dictated by the thermal design 
of each cell or module.  
 
Designing a battery thermal management system for given HEV/PHEV battery specifications 
starts with answering a sequence of questions: “How much heat must be removed from a pack or 
a cell?” “What are the allowable temperature maximum and difference?” “What kind of heat 
transfer fluid is needed?” “Is active cooling required?” “How much would the added cost be for 
the system?” etc.  In order to find a high performance and cost effective cooling system, it is 
necessary to evaluate system thermal response and its sensitivity as a function of controllable 
system parameters.  
 
The diagram below shows the working flow chart of our battery thermal management modeling 
process. Cell characteristics (dimensions, geometry, electrochemistry), operating conditions 
(power load from the vehicle, ambient conditions), module/pack cooling strategy (active or 
passive, air or liquid cooling, flow rates and temperature duty cycle) are all input to the battery 
thermal design management model. The model uses these inputs to do component and system 
analysis to predict the thermal response of the design.  Modifications to the design can then be 
evaluated to determine the optimum solution considering factors such as cost, volume, mass, and 
maintenance issues.  
 

 

 
 
 
 
 
Analysis and Results 
 
A typical parallel cell cooling system was investigated as an example study. Figure 1 presents the 
schematics of a system configuration and system thermal responses. Pressure loss in coolant 
channel (ΔP), coolant temperature change between channel inlet and outlet (ΔT1), and 
temperature difference between cell surface and coolant mean temperature (ΔT2) are chosen for 
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the system responses of interest. ΔP and coolant flow rate determine the required pump/blower 
power and size. ΔT1 is a parameter indicating cell temperature uniformity possibly achieved. ΔT2 
is closely related to heat transfer coefficient, h, and shows how much the cell temperature would 
be higher than the coolant temperature. On the other hand, maximum cell surface temperature 
relative to coolant inlet temperature, ΔTmax= ΔT1+ ΔT2, can be used as a parameter for controlling 
the upper limit of cell temperature tolerance.  
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Figure 1: Schematics of a typical parallel cell cooling system and system responses 

 
 
Note that the cell internal temperature distribution and its maximum depend on the thermal paths 
and resistances inside a cell. Therefore, the shapes, materials, thermal connectivity of cell 
components and location of heat transfer are important for predicting cell internal temperatures. 
Detailed investigations into this topic have been covered in separated studies. The effects of using 
different types of coolants were examined here. (See Table 1 for the properties of the heat transfer 
fluids examined here; air and dielectric mineral oil for direct cooling, and water/glycol for jacket 
cooling.) We selected coolant mass flow rate ( ) and the hydraulic diameter of coolant 
channels (D

cm&
h) as system control parameters. In this example case study, the cell was specified to 

have a 50 mm diameter, a 100 mm length, and to generate 2 W of heat.  
 
Even though the heat transfer is enhanced in a turbulent flow regime, the required blower power 
greatly increases with laminar to turbulence flow-transition. Therefore, many heat exchanger 
applications are designed to be operated at laminar flow regimes. If the channel gap is much 
smaller than cell diameter, the following fully developed laminar flow relations can be applied to 
the presented system. 
 
 cf Re = 24      (Eq. 1) 
 Nu = 5.385 
 
where Re= VDh/ν, Nu= hDh/k and cf  is friction coefficient. The Nuselt number is evaluated for 
constant heat flux wall boundary conditions. 
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Table 1: Properties of coolants typically used in battery cooling systems 

Figure 2 (a) shows the channel pressure losses p nit mass flow rate ) as a function of 
oolants

re

 

 
 
er u ( cmΔP &/

the coolant channel hydraulic diameter of coolant channel for different c . Due to the large 
difference in kinematic viscosity, ΔP varies in very different ranges for each coolant fluid. ΔP is 
directly proportional to fluid kinematic viscosity (ν) and coolant mass flow rate ( cm& ). If the cell 
diameter is much larger than Dh, ΔP becomes inversely proportional to Dh

3. Therefo  the channel 
pressure loss changes are very sensitive to Dh when it is small, especially for the high kinematic 
viscosity fluids. 
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Flow power requirements to overcome the channel friction loss were normalized by the square of 
coolant mass flow rate and compared for the different coolant systems in Figure 2(b). Due to the 
much smaller fluid density and consequently larger volumetric flow rate at given mass flow rate, 
the air cooling system requires much higher flow power for compensating channel friction loss 
than the other systems at the given coolant mass flow rate and channel height. Note that not only 
the coolant channel friction loss but also the system manifold friction head and the static pressure 
head make a significant contribution to the required pumping power in liquid cooling systems. 
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Figure 2: (a) Channel pressure loss per unit mass flow rate as a function of the coolant channel 
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Variations of ΔT1 and ΔT2 are shown for  and Dcm& h respectively in Figure 3. To achieve the 
temperature uniformity over a cell, it is preferred to keep coolant temperature change in the 
channel as small as possible. ΔT1 is inversely proportional to coolant heat capacity flow rate. 
Therefore, increasing mass flow rate is not as effective in reducing coolant temperature change in 
large flow rate cooling as it is in a small flow rate region. In other words, in small flow rate 
cooling, a little change in flow rate can greatly affect the coolant temperature change, and 
consequently cell temperatures (especially when air is used for the heat transfer medium that has 
small cp as compared in Figure 3). Water/glycol is the most preferred among the tested coolant 
materials for achieving temperature uniformity of cell/pack due to its large heat capacity.  

pccm
ΔT

&

1~1       (Eq. 3) 
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Figure 3: (a) Variation of coolant temperature change inside a system as a function of coolant mass 
flow rate. (b)Variation of temperature difference between coolant and cell surface as a function of 

hydraulic diameter of coolant channel.  
 
Temperature difference between coolant flow and cell surface, ΔT2, is linear to Dh with slope 
being proportional to 1/k as shown in Figure 3. Note that 0.7 mm jacket wall thickness and 0.05 
mm air layer were considered between cell surface and water/glycol coolant channel. Due to 
small thermal conductivity of air, ΔT2 rapidly increases with Dh in air cooling. Therefore, if a 
small ΔT2 (or large heat transfer coefficient) is required, it is recommended to use the smallest 
hydraulic diameter channel possible for air cooling. On the other hand, ΔT2 is not so sensitive to 
variations of Dh in water/glycol cooling system due to relatively large thermal conductivity. 

constD
k

ΔT h +
1~2      (Eq. 4) 

Note that const is 0 for direct contact cooling in the relation shown above.  
 
The ΔT2 curve shown in Figure 3 also implies heat transfer coefficient, h, which is inversely 
proportional to ΔT2. h is plotted as a function of Dh in Figure 4. In steady state, high h lowers ΔT2 
to reduce cell temperature. In unsteady heat transfer viewpoint, high h means fast heat removal 
from small temperature displacement, reducing the peak temperature of the cell. Therefore, high h 
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smoothes out the cell temperature oscillations under transient heat generating conditions. The 
heat transfer coefficient evaluated at cell surface for water/glycol jacket cooling greatly decreases 
compared with the value it would be if direct contact cooling due to added thermal resistances 
between coolant and cell. The reduction is greater at small Dh. So, direct liquid cooling using 
mineral oil shows much higher h values than the other coolants at Dh <2~3 mm in the presented 
case. In spite of large pressure losses due to large ν and small Dh in this operating region, mineral 
oil cooling may be preferred for its high heat transfer coefficient in certain conditions.  
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Figure 4: Variation of heat transfer coefficient as a function of coolant channel hydraulic diameter. 
 
Contours of maximum cell surface temperature relative to coolant inlet temperature, ΔTmax (=ΔT1+ 
ΔT2) are plotted as a function of coolant mass flow rate ( ) and hydraulic diameter of coolant 
channels (D

cm&
h) for different coolant systems. The values of ΔTmax  in the air system are much higher 

compared with other fluid systems due to its small heat capacity and thermal conductivity. 
Contour lines for the air system, Figure 5(a), are dense and mostly aligned vertically at > ~ 1 
g/s. This means that ΔT

cm&
max is dominated by and sensitive to Dh in this operating region. On the 

other hand, the water/glycol jacket cooling system (Figure 5(c)) contour lines are almost 
horizontal at < ~ 2 g/s, and the line density is relatively sparse at > ~ 2 g/s. This means that 
ΔT

cm& cm&
max is not very sensitive to Dh, and that ΔTmax would not be a strict limiting design factor of the 

water/glycol system. The lowest value of ΔTmax appears in the mineral oil direct contact cooling 
system (Figure 5(b)) with a small Dh and large  operating region. Note that great pressure loss 
occurs in that operation region.  

cm&
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(a) Air                                         (b) Mineral Oil                          (c) Water/Glycol 

 
Figure 5: Contours of maximum cell surface temperature relative to coolant inlet temperature 

 
 

An example of confining the operation zone to given conditions is shown in Figure 6. By drawing 
contour lines of required conditions, possible operating zones can be found. The colored area 
shown in Figure 6 represents the operating zone satisfying Re<2300, ΔP<110 Pa, ΔTmax<4.5 oC 
and ΔT1<1.5 oC in an air cooling system. Laminar restriction of Reynolds number is to avoid 
excessive friction loss due to turbulence flow transition. Point A is the operating point for getting 
maximum h for given conditions. B is the lowest ΔTmax operating point, and C is the minimum 
pressure loss (ΔP) operating point.  
 

 
Figure 6: Confining the operation zone and parameter optimization to given conditions 

 
An operating point (Dh , ) = (2.2 mm, 1.33 g/s) which is close to point A in Figure 6, the 
maximum h operating point satisfying given limiting conditions, was selected and simulated for 
the air cooling system using an axi-symmetric computational fluid dynamics (CFD) model. The 
model geometry and mesh are presented in Figure 7. The model includes internal cell component 
materials and geometries. The cell core winding was treated as a continuous material having 
orthotropic properties according to layer directions. As specified previously, the cell is 50 mm in 
diameter, 100 mm in length and generates heat with a rate of 2 W at its core. Inlet air temperature 
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was set to 35 oC. The other surfaces, except the channel/cell interface were set as thermally 
adiabatic boundaries.  
 
Figure 8 shows temperature distribution contours of the cell and cooling air. In the upper frame of 
the figure, radial-direction length scale is exaggerated to see the thermal development in the air 
channel. Cell surface temperature constantly increases in the axial direction as coolant air 
temperature increases. However, cell internal temperature distribution is determined by the 
thermal paths and thermal resistances inside a cell. The maximum temperature of 38.41 oC 
appears on the cell axis a little bit downstream from the cell center in the presented cell 
specification.  
 
 
 

Cell Core

Coolant Channel

Terminal

Can

Terminal Current Collector

 
Figure 7: Model geometry and mesh representing an axisymmetric cylindrical cell 

 
 
 

 
Figure 8: Temperature distribution contours of the cell and the air coolant channel  

(top: expanded view near can surface and coolant channel) 
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Axial distribution of air flow mean temperature, cell surface temperature and cell center-line 
temperature are presented in Figure 9. Coolant air temperature change, ΔT1, is computed as 1.50 
oC. The maximum cell surface temperature relative to inlet air temperature, ΔTmax, is 2.89 oC at 
the channel outlet. The highest battery temperature appears in the middle of the centerline of the 
cell and displaced from coolant inlet temperature by 3.41 oC. Due to entrance effect, air 
temperature rapidly increases near the channel inlet. In the entrance region, the radial profiles of 
temperature and velocity at the cell/coolant interface have steep gradients representing higher 
heat flux and wall friction. Entrance effect is more clearly seen on the axial distribution of heat 
transfer coefficient (h) and heat flux shown in Figure 10.  
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Figure 9: Axial distribution of air flow mean temperature, cell surface temperature and cell center-

line temperature 
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Figure 10: Axial distribution of heat transfer coefficient and heat flux 
 
Heat transfer coefficient, h, at the cell surface has a larger value near the channel inlet, and 
consequently so does the heat flux. As the flow approaches fully developed, the value of h 
converges to the constant value, 56.23 W/m2K, which is slightly lower that the predicted value, 
59.24 W/m2K, using the relations shown in Eq. 1. However, the mean value of h over the heat 
transfer surface has a little bit higher value, 60.96 W/m2K, due to the entrance zone effect. One of 
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the reasons for this discrepancy comes from the fact that heat flux distribution is not quite 
constant along the axial distance. Heat flux decreases continuously with axial distance so that the 
cell surface temperature increases slowly compared to coolant air mean temperature as shown in 
Figure 9 (see the difference of slopes of two curves).  
 
System response parameters from different prediction methods are presented in Table 2.  Even 
though ΔP is predicted to be a little bit higher in CFD analysis due to the entrance effect, the 
parameters are generally well matched between the prediction methods except for the maximum 
cell surface temperatures. The disagreement of ΔTmax mainly originates from the fact that CFD 
analysis can capture the axially decreasing heat flux from cell to air, which makes the axial 
gradient of cell surface temperature smaller than that of air temperature. This is because high 
conductivity materials inside a cell, such as the aluminum can, would transfer internal heat flow 
to make cell temperature more even. This result strongly implies that capturing the internal heat 
flow paths and thermal resistances inside a cell are important for the improved prediction of 
cell/battery thermal behaviors.  
 

Table 2: System response parameters - Two different prediction methods 
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Cooling of a larger cell that has 50 mm diameter, 200 mm length and generates heat with a rate of 
4 W at the cell core was simulated for a direct air cooling system and a water/glycol jacket 
cooling system. Reducing channel height greatly increases heat transfer coefficient at cell surface 
in a direct contact air cooling system. But reducing the channel height is limited by the channel 
friction loss, which increases sensitively with decreasing Dh for a given coolant flow rate. On the 
other hand, in an indirect water/glycol liquid cooling system, channel height is not a sensitive 
factor affecting heat transfer coefficient at cell surface as it is in air systems, even though 
water/glycol channel friction loss is not as significant in magnitude as in air for a given coolant 
mass flow rate. But it is still recommended in a liquid cooling system to use a small gap coolant 
channel to reduce system weight and volume by minimizing the amount of coolant in a system 
operated at a given coolant flow rate. CFD analyses were carried out for a direct air cooling 
system operated at (Dh , ) = (2.2 mm, 1.33 g/s) and for a water/glycol jacket cooling system at 
(D

cm&

h , ) = (4.0 mm, 1.70 g/s) as shown in Figure 11. Inlet coolant temperatures were set to 35 cm&
oC.  The results indicate that due to the large differences of coolant velocity and kinematic 
viscosity between the two systems, the air cooling system needs to compensate for a much larger 
pressure loss than the water/glycol liquid cooling system (221 Pa versus 7.68 Pa). 
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Figure 11: Schematics of larger cell geometries and coolant channels 

 
 
Temperature distribution contours are shown for comparison in Figure 12. Even though the rate 
of heat removal from cell to coolant is the same for the two compared systems, air flow is rapidly 
heated compared with water/glycol due to the small heat capacity of air.  In addition, the 
difference between coolant mean temperature and cell surface temperature is larger in the air 
cooling system because of the smaller heat transfer coefficient. Therefore, not only the maximum 
temperature but also the temperature non-uniformity inside a cell is larger in the air cooling 
system than in the water/glycol system. Temperature imbalance inside a cell is bigger in the air 
cooling system. Note that temperature contour-lines are distributed similarly inside a cell in both 
cases. This implies that internal heat flows are similar in both systems, and consequently that the 
internal heat paths and the thermal resistances are determining the relative temperature 
distribution inside a cell.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aluminum can
jacket

cell core cell core

aluminum can

air

water/glycol

 
Figure 12: Comparison of temperature distribution contours between air cooled cell and water/glycol 

cooled cell 
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Axial temperature profiles of the air cooling system and the water/glycol system are compared in 
Figure 13 (a). Compared with the water/glycol liquid cooled cell, the maximum temperature on 
the cell axis in the air cooled cell appears near the channel exit. A larger temperature difference 
between each end of the cell shifts the maximum temperature location further downstream. Heat 
transfer coefficients at cell surfaces are plotted in Figure 13 (b) for both systems.  

coolantsurfcell TT
qh
−
′′

=
_

      (Eq 5) 

Thermal resistances of the jacket wall and air gap layer between the channel coolant and the cell 
surface were used to evaluate the heat transfer coefficient of the water/glycol cooling system. 
Temperature displacement between the channel surface and the cell surface in the water/glycol 
cooled cell shown in Figure 13 (a) is due to these added thermal resistances. The higher heat 
transfer coefficient of the water/glycol system leads to a smaller temperature difference between 
the coolant and cell surface as shown in Figure 13 (a) and Eq. 5. Even though the cell 
temperatures are distributed in different ranges in each system, the magnitudes of temperature 
differences between the cell center axis and the cell surface of the air cooled cell and the 
water/glycol cooled cell are not very different because the same cell specifications are assumed 
for both cases.  
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Figure 13: Axial profiles of temperatures (a) and heat transfer coefficients at cell surfaces (b) 
 
 
A serial cooling system may be preferred over a parallel cooling system for its simplicity of 
manifolding flow distribution in certain circumstances. The CFD simulation results shown in 
Figure 13 are simply extended to a six-cell serial cooling system and presented in Figure 14. 
Other heat exchanges among the cells such as conduction through electric connectors are ignored. 
Cell temperature differences in a module more rapidly increases in the air cooling system 
proportional to the number of cells connected serially with the coolant channel. Cell-to-cell 
temperature imbalance mainly comes from the coolant temperature change in coolant channels. 
Due to the low heat capacity of air, it is difficult to accomplish temperature uniformity inside a 
cell or between the cells in a module using air for cooling large or high heat generating cells. 
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Figure 14: Extended temperature profiles for a six-cell serial cooling system 
 
 
In order to investigate the time dependent thermal response of battery cooling systems, transient 
CFD analyses were carried out with a cell specified in Figure 7. An air cooling system and a 
mineral oil direct liquid cooling system were compared. The systems were operated with the 
same channel geometry and coolant mass flow rate, (Dh , ) = (2.2 mm, 1.33 g/s). Initially, each 
system was in steady state with a heat generation rate of 2 W. A system was heated using sudden 
heat generation (50 W) for 2 min. Then, the cell was cooled down to the initial steady state 
conditions. Coolant inlet temperatures were kept constant at 35 

cm&

oC.  
 
Using steady state fully developed relationships shown in Eq.1, channel pressure losses (ΔP) are 
predicted as 109.1 Pa and 418.3 Pa for the air system and the mineral oil system respectively. On 
the other hand, heat transfer coefficients are predicted as 59.24 W/m2K for the air cooled surface 
and 318.2 W/m2K for the mineral oil cooled surface. The mineral oil direct contact liquid cooling 
system is expected to have a much higher heat transfer coefficient than the other coolant systems 
(direct air and indirect water/glycol) when it is operated at small channel (Dh) and large coolant 
flow rate ( ) at the expense of high pressure loss in the coolant channel. In addition, mineral oil 
has a higher heat capacity rate ( ) than air flow (2.53 J/Ks versus 1.34 J/Ks), which means it 
can remove the suddenly released heat from the cell with a smaller increase of coolant 
temperature. The simulation results showing the transient effect of using high h and a high heat 
capacity coolant system are presented in Figure 15 and Figure 16.  

cm&

pccm&
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Figure 15: Time variation of heat transfer rates from the cell to the coolant 
 
 
The heat transfer rates from the cell to the coolant are compared in Figure 15. Due to higher heat 
transfer coefficient, released heat is more quickly removed from the mineral oil cooled cell. In a 
high h and high  system, a large amount of heat can be transferred from cell to coolant with 
a small temperature increase of the cell while the coolant temperature does not change much.  

pccm&

Time variations of mean temperature of the cell core and mean temperature of the coolant outlet 
temperature are shown in Figure 16 for both the air and the mineral oil cooling systems. In the 
mineral oil cooling system, the peak temperature is lower and the cool down time is shorter. The 
results imply that a high h system is preferred for limiting the maximum peak temperature of a 
cell and damping out the temperature oscillation in highly transient heat generating battery 
systems. 

 
 

Figure 16: Time variations of mean temperature of the cell core and the coolant outlet temperature 
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Conclusions 
 
In order to achieve performance and cost effective cooling of a battery module/pack for electric 
or hybrid vehicles, the system thermal responses and their sensitivities are evaluated as a function 
of controllable system parameters (e.g. Dh and ). For given cell specifications, different types 
of coolant are examined: air cooling, direct contact liquid cooling using mineral oil, and (indirect) 
water/glycol jacket cooling system. Trade-off analysis has been performed to identify the 
optimum operating parameters of cooling systems with given design-limiting conditions. 

cm&

 
The simplicity of an air battery cooling system is an advantage over a liquid coolant system. Air 
cooling could have less mass, has no potential for leaks, needs fewer components, and could cost 
less. However, the heat transfer coefficient (h) of an air cooling system is lower than that of other 
coolant systems. Another drawback of an air system comes from its small heat capacity. Due to 
the small heat capacity of air, it is difficult to accomplish temperature uniformity inside a cell or 
between the cells in a module using air for cooling large or highly heat generating cells. The 
temperature difference between coolant air and cell surface (ΔT2) is sensitive to variations of Dh 
due to small heat conductivity of air. h is inversely proportional to Dh, while pressure loss in 
channel (ΔP) is inversely proportional to Dh

3. Therefore, increasing h by reducing Dh is limited by 
the required blower power. Reducing coolant air temperature change inside a system (ΔT1) by 
increasing flow rate ( ) is also limited by blower power and size. cm&
 
Liquid cooling systems are more effective in heat transfer and take up less volume, but the added 
complexity and cost may outweigh the merits. Maintenance and repair of a liquid cooled pack is 
more involved and costlier. Indirect liquid cooling, with jackets, is easer to handle than direct 
liquid cooling. A water/glycol solution for an indirect cooling system has much lower viscosity 
than dielectric mineral oil for direct liquid cooling. Therefore, increasing the coolant flow rate 
may not be as severely restricted by the pump power as it is in a mineral oil direct cooling system. 
Water/glycol has a higher heat capacity. So, the coolant temperature change inside a system can 
be greatly reduced by using water/glycol as a heat transfer fluid in the system. This means that 
cell/module temperature uniformity can be effectively achieved even in a serial cooling system if 
the coolant paths are properly designed. Water/glycol solutions generally have a higher thermal 
conductivity than oil. However, due to the added thermal resistance between coolant and cell 
surface, such as jacket wall and air gap, the effective heat transfer coefficient at the cell surface is 
greatly reduced. Because of the added thermal resistances, h is not as sensitive to the variation of 
Dh. Since the coolant channel friction head is generally small, Dh is not a critical design parameter 
in a water/glycol system. A mineral oil direct contact liquid cooling system has a much higher 
heat transfer coefficient (h) than the other coolant systems when it is operated at small channel 
(Dh) and large coolant flow rate ( ) at the expense of high pressure loss in coolant channel. So, 
a mineral oil cooling system can be preferred for limiting the maximum peak temperature of a 
cell and damping out the temperature oscillation in certain circumstances such as in highly 
transient heat generating battery systems. 

cm&

 
CFD analysis captured the axially decreasing heat flux from cell to air which makes the axial 
gradient of cell surface temperature smaller than that of air temperature. This implies that 
capturing the internal heat flow paths and thermal resistances inside a cell using a sophisticated 
three-dimensional cell model is important for the improved prediction of cell/battery thermal 
behaviors.  This paper identified analyses and approaches that engineers should consider when 
they design battery thermal management systems for vehicles. 
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