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1) Models & methods 
 
2) Analysis: PHEV 10 year / 150k mile life 
 
3) Battery control research projects 
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NREL Battery Modeling Tools 

1) Multi-Scale Multi-Domain Model 
o 3D electrochemical/thermal physics 
o 3D thermal/electrical/mechanical abuse 

    DOE Computer Aided Eng. of Batteries (CAEBAT) program 

 
2) Battery Life Predictive Model 

o Energy/power performance degradation as 
function of time, Ncycles, T, SOC, ΔSOC, C-rate 

o Integrated in BLAST 
 

3) BLAST (Battery Lifetime Analysis and Simulation Tool) 
o Load profile, climate & thermal simulation 

(vehicles, stationary) 
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Figure credit: 
 Ilan Gur (ARPA-E) & Venkat 

Srinivasan (LBNL), 2007 
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Electrochemical Window – Degradation  
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Figure : Ilan Gur (ARPA-E) & Venkat Srinivasan (LBNL) 2007 
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• Low T, & high C-rate 

Cycling at low T, 
& fast charging 



6 

Set of trial equations representing physical 
fade mechanisms, e.g. 
• SEI growth & damage 
• Particle fracture 
• Electrode isolation 
• Electrolyte decomposition 
• Gas generation, delamination 
• Li plating 

 
(Non)linear combinations of mechanisms 
describe performance metrics changes with 
time & cycles 
• Capacity (generally min. of several limiting mechanisms) 
• Resistance (generally additive) 

NREL Life Predictive Modeling – Approach  

S. Santhanagopalan, K. Smith, J. Neubauer, G.-H. Kim, A. Pesaran, 
M. Keyser, Design and Analysis of Large Lithium-Ion Battery 
Systems, Artech House, 2015 
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• Experience with 
8-10 NCA, FeP, 
NMC 
technologies 

  
• NCA model, 

shown here, 
implemented in 
BLAST 

NREL Life Predictive Modeling – NCA Example 
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Life comparison of 5 Li-ion technologies 
In addition to aging condition, 
life changes significantly with 
Li-ion technology 

Temperature and electrical cycling assumptions: 
• Temperature: 28oC 
• Cycling: 2-hr charge to 100% SOC; 10-hr rest; 2-hr dischg; 10-hr rest 
 

*Faster fade at 30% DOD relative to 90% DOD in this scenario is due to longer dwell time at high SOC for the 30% DOD case 

o Power/energy ratio 
o Chemistry 
o Design heritage  

(85% SOCavg ) (55% SOCavg ) 
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BLAST-Lite standalone model GUI 

• Versions for 
vehicle (shown) 
and stationary 
energy storage 
applications 
 

• Downloadable 
from NREL 
website later 
this year 
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BLAST-Lite sample model results 
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Cell-to-cell capacity imbalance 
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• Pack thermal imbalance testing 
and simulation 

• Expert interviews & teardown 
analysis of NCA automotive pack 

aged to 70% remaining energy 
• Simulation of sources of cell-to-cell aging variability 

 

Non-uniform degradation includes ±10% random perturbation on 
life model degradation rates 

±5.5% variation at EOL 

±5% 

Tmax cell 

Tavg cell 

Tmin cell 

Tambient 



12 

Cooling system impact on cell aging imbalance 
BLAST simulation of xEVs across 5 driving patterns, 4 climates 
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1) Lifetime models & methods 
 
2) Analysis: PHEV 10 year / 150k mile life 
 
3) Battery control research projects 
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Impacts on PHEV lifetime 

• AT-PZEV 10yr/150kmi warranty 
• Presently no remaining capacity requirement 
• But important for long term customer satisfaction and resale 

value 
 

• Nominal assumptions (variations noted on each slide) 

o Graphite/NCA life model 
o 20oC 
o 90% SOCmax 
o Average cell degradation (margin required for worst cell if passive balancing) 

o 1 cycle per day 
o 2/3 of rest time spent at SOCmax  
o 1/3 of rest time spent at SOCmin 
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Calendar versus cycle limitations on years life 
Electrode site limited 
(cycle life) 

Cyclable Li limited 
(calendar life, coupled with cycling) 

• Low temperature  
• Low average SOC • Low SOCmax 

• Delayed/slow 
     charging 

• High temperature  
• High average SOC & high DOD 

• Low DOD & C-rate 
• Fewer cycles/day 
• ~Room temperature 

• High DOD & C-rate 
• More cycles/day 
• Low min temperature 
• High max temperature 
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Impact of number of cycles per day 
• PHEV40 typical worst case is 1 cyc/day:  10 yrs ~ 68% DOD 
• PHEV20 could experience 2 cyc/day: 10 yrs ~ 56% DOD 
• PHEV10 could experience 4 cyc/day: 10 yrs ~ 43% DOD 

10 cyc/day 

4 cyc/day 

2 cyc/day 

1 cyc/day 
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Impact of maximum SOC 

100% 
95% 

90% 
85% 

• Plot below assumes constant SOCmax. Alternately, can be varied with  
o Seasonal or battery temperature (e.g. low in summer, high in winter) 
o Service life (e.g. gradually increasing SOCmax to maintain available energy) 
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All rest at SOCmax  
  (opportunity charging) 

2/3 of rest at SOCmax 

1/3 of rest at SOCmax 

Zero rest at SOCmax  
  (just-in-time charging) 

Impact of rest time at maximum SOC 
• Impacted by charging behavior 
• Huge calendar lifetime benefit w/ delayed charging 

o Must be traded with providing customer full charge just in time for next trip 
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Impact of lifetime average temperature 
• Hot climates require some combination of 
o Chilled thermal management 
o Restricting SOCmax< 90% [when battery is hot and/or during hot seasons] 
o Increasing SOC window 

     over 10 years 
o Delayed charging 
o Reducing 10 year 

    remaining capacity 
    requirement < 80% 

35oC 
30oC 

25oC 

20oC 
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1) Lifetime models & methods 
 
2) Analysis: PHEV 10 year / 150k mile life 
 
3) Battery control research projects 
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Battery Prognostic-based Control for xEVs 

• ARPA-E AMPED project led by Eaton Corporation 
 

• Issue: xEV battery packs are oversized & controls are 
     conservatively tuned to achieve typical life of 10 years. Oversizing is expensive 

 

• Solution: 35% smaller HEV battery by providing vehicle controller with real-time 
knowledge of battery degradation  
 

• NREL roles: Developed battery prognostic model with 6 months accelerated cell 
testing. Validated model and controls with 33 month 4-season HIL pack testing  
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Figure: http://www.eaton.com/Eaton/ … 
ProductsServices/HybridPower/Applications/index.htm   
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Robust Cell-level Control of xEV Batteries 
• ARPA-E AMPED project led by Utah State, with Ford, CU-Boulder, UCCS, NREL 

 

• Life extension: 30% to 45% xEV battery life extension using new hardware and 
controls to differentially cycle weak cells & extend their life 
 

• Cost neutral: Active cell balancing hardware supplies vehicle auxiliary 12V loads. 
Replaces HV  12V DC-DC converter (~$200 component) 
 

• NREL roles: Benefits modeling, control strategy, validation w/ 1.5 year accel. aging 

BLAST model 
prediction 

Validation testing on PHEV pack 
• 35oC amb., 4-5 US06 cyc./day 

• Bottom cells: Passive balancing 
• Top cells: Life balancing 
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• USU AMPED 
balancing 
system 
compensates for 
non-uniform cell 
aging 
 

• Thermal 
management 
still needed to 
remove heat 
load and 
suppress 
maximum cell 
temperature 

Life balancing control strategy reduces 
need for tight cell-to-cell thermal control 
BLAST simulation. Individual data points are same scenarios as shown on slide 12. 
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Summary 

• Main calendar life factors: Average T & SOC 
o DODmax secondary (inverse correlation with avg. SOC) 

• Main cycle life factors: DOD & C-rate (max, RMS); 
high/low T extremes 

• Today’s life models reasonably extrapolate test 
data forward in time 
o Extrapolation to untested duty cycles still uncertain 
o Integration with physics models needed to optimize next 

generation cell designs 
• Advanced controls show promise for  

o 35% smaller HEV battery 
o 30-45% longer PHEV & BEV life 
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