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NREL Battery Modeling Tools

1) Multi-Scale Multi-Domain Model

o 3D electrochemical/thermal physics
o 3D thermal/electrical/mechanical abuse

DOE Computer Aided Eng. of Batteries (CAEBAT) program

2) Battery Life Predictive Model

o Energy/power performance degradation as
function of time, N ., T, SOC, ASOC, C-rate

o Integrated in BLAST

3) BLAST (Battery Lifetime Analysis and Simulation Tool)

o Load profile, climate & thermal simulation
(vehicles, stationary)
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Electrochemical Operating Window
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Electrochemical Window — Degradation

Figure : llan Gur (ARPA-E) & Venkat Srinivasan (LBNL) 2007 Electrolyte
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NREL Life Predictive Modeling — Approach

Set of trial equations representing physical
fade mechanisms, e.g.

SEl growth & damage
Particle fracture

Electrode isolation
Electrolyte decomposition
Gas generation, delamination
Li plating

(Non)linear combinations of mechanisms
describe performance metrics changes with
time & cycles

Capacity (generally min. of several limiting mechanisms)
Resistance (generally additive)
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NREL Life Predictive Modeling — NCA Example

. . Calendarfade qulingfade
* EXxperience with o e | [ ot
» Coupled with cycling mechanical fracture
8-10 NCA, FeP, * 3y, by = fADOD,TVor,.) | * @, €5 = fADOD, T,V ,...)
NMC pooative R = agtz + a,N
esistance ’
technologies Relat B
J ROl Q) = min (Qu; Quges)
Qgi=bo+b1tz+---." Q§ite§=co+'b2N+'"
« NCA model, S N i
shown here, L
iImplemented in  § SN T :
j=]
BLAST 8 NN
@ BB SN 50% ADOD -+-----4-------+-
O -vrvverforvoeebeoen 8056 mc}:D------:;“:=~=:;;::; e
75 '

| | | | | L e
0 500 1000 1500 2000 2500 3000 3500 4000
# Cycles

NATIONAL RENEWABLE ENERGY LABORATORY 7



Life comparison of 5 Li-ion technologies

In addition to aging condition, o Power/energy ratio

life changes significantly with o Chemistry
Li-ion technology o Design heritage
30% DOD (85% SOC,,, ) 90% DOD (55% SOC,,,)
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Temperature and electrical cycling assumptions:
* Temperature: 28°C
* Cycling: 2-hr charge to 100% SOC; 10-hr rest; 2-hr dischg; 10-hr rest

*Faster fade at 30% DOD relative to 90% DOD in this scenario is due to longer dwell time at high SOC for the 30% DOD case
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BLAST-Lite standalone model GUI
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Trip Miles

Avg Charging Load, kW

Resistance Growth, %

BLAST-Lite sample model results
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Cell-to-cell capacity imbalance

e Expert interviews & teardown

analysis of NCA automotive pack * Simulation of sources of cell-to-cell aging variability

aged to 70% remaining energy
Non-uniform degradation includes +10% random perturbation on

life model degradation rates
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Cooling system impact on cell aging imbalance

BLAST simulation of XEVs across 5 driving patterns, 4 climates
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1) Lifetime models & methods

2) Analysis: PHEV 10 year / 150k mile life

3) Battery control research projects




Impacts on PHEV lifetime

e AT-PZEV 10yr/150kmi warranty
* Presently no remaining capacity requirement

e But important for long term customer satisfaction and resale
value

¢ Nominal assumptions (variations noted on each slide)
Graphite/NCA life model

20°C

90% SOC, ...,

Average cell degradation (margin required for worst cell if passive balancing)
1 cycle per day

2/3 of rest time spent at SOC___,

1/3 of rest time spent at SOC, ..

O 0O O 0O 0O O O
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Calendar versus cycle limitations on years life

Cyclable Li limited

Electrode site limited

(calendar life, coupled with cycling) (cycle life)
s | )
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Impact of number of cycles per day

 PHEVAO0 typical worst case is 1 cyc/day: 10 yrs ~ 68% DOD
e PHEV20 could experience 2 cyc/day: 10 yrs ~ 56% DOD
 PHEV10 could experience 4 cyc/day: 10 yrs ~ 43% DOD

15
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Impact of maximum SOC

* Plot below assumes constant SOC__ . Alternately, can be varied with
o Seasonal or battery temperature (e.g. low in summer, high in winter)

o Service life (e.g. gradually increasing SOC_ _, to maintain available energy)
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Impact of rest time at maximum SOC
* Impacted by charging behavior
* Huge calendar lifetime benefit w/ delayed charging

o Must be traded with providing customer full charge just in time for next trip
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Impact of lifetime average temperature

 Hot climates require some combination of
o Chilled thermal management

o Restricting SOC,..,.< 90% [when battery is hot and/or during hot seasons]

o Increasing SOC window 15

over 10 years
o Delayed charging
o Reducing 10 year

remaining capacity

requirement < 80%

Years to 80% capacity, average cell
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1) Lifetime models & methods

2) Analysis: PHEV 10 year / 150k mile life

3) Battery control research projects




Battery Prognostic-based Control for xEVs

e ARPA-E AMPED project led by Eaton Corporation

Figure: http://www.eaton.com/Eaton/ ...
ProductsServices/HybridPower/Applications/index.htm

e |ssue: XEV battery packs are oversized & controls are
conservatively tuned to achieve typical life of 10 years. Oversizing is expensive

e Solution: 35% smaller HEV battery by providing vehicle controller with real-time
knowledge of battery degradation

e NREL roles: Developed battery prognostic model with 6 months accelerated cell
testing. Validated model and controls with 33 month 4-season HIL pack testing

Cell Test Data | Model Prediction

Pack-level Validation
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Robust Cell-level Control of xEV Batteries

e ARPA-E AMPED project led by Utah State, with Ford, CU-Boulder, UCCS, NREL

e Life extension: 30% to 45% xEV battery life extension using new hardware and
controls to differentially cycle weak cells & extend their life

e Cost neutral: Active cell balancing hardware supplies vehicle auxiliary 12V loads.
Replaces HV = 12V DC-DC converter (~S200 component)

 NREL roles: Benefits modeling, control strategy, validation w/ 1.5 year accel. aging
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Life balancing control strategy reduces
need for tight cell-to-cell thermal control
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Summary

 Main calendar life factors: Average T & SOC
o DOD, ., secondary (inverse correlation with avg. SOC)

e Main cycle life factors: DOD & C-rate (max, RMS);
high/low T extremes

 Today’s life models reasonably extrapolate test
data forward in time
o Extrapolation to untested duty cycles still uncertain

o Integration with physics models needed to optimize next
generation cell designs

 Advanced controls show promise for
o 35% smaller HEV battery
o 30-45% longer PHEV & BEV life
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