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APPROACH TECHNICAL ACCOMPLISHMENTS
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packs, and their respective thermal management systems

Continue thermal characterization for DOE, USABC, and

partners

+ Cell, module, and subpack calorimeters are available
for industry validation of their energy storage systems

Timeline

«  Project Start Date: October 2004

+ Project End Date: September 2018
+ Percent Complete: Ongoing
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Decreased performance at low temperatures

Insufficient cycle life stability to achieve the 3,000 to
5,000 “charge-depleting” deep discharge cycles

RELEVANCE

Life, cost, performance, and safety of energy storage
systems is strongly impacted by temperature

Objectives

Thermally characterize cell and battery hardware and
provide technical assistance and modeling support to
DOE/U.S. DRIVE, USABC, and battery developers for
improved designs

Enhance and validate physics-based models to
support the thermal design of long-life, low-cost
energy storage systems

Quantify the impacts of temperature and duty cycle on
energy storage system life and cost

Thermal Management Performance
« Temperature variation across
pack under realistic conditions
+ Assessing vapor compression,
air, and liquid cooling systems
Profiles: US06 cycles, CC
discharge/charge

Heat Generation and Efficiency

Using state-of-the-art isothermal
battery calorimeters

+ Heat generation, heat capacity,
and efficiency

Test Temperature Range: -30°C
to +45°C

Profiles: USABC and US06
cycles, CC
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During the USABC programs, electrochemical and mechanical
design changes are made to the cells. Calorimetry can
determine if the changes are positive.

Heat Generation under Various Drive Cycles

Calorimeter Trace

Calorimeter can measure efficiency and heat generation
under various drive cycles—helps in designing thermal
management systems for battery packs
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Approximately 100 cells in pack
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Cycle type can have a large effect on efficiency and heat rate

and without active cooling

End of CD Cycle End of CS Cycle

Test Ambient  Maximum Delta  Maximum  Delta
Temp. Temp. Temp. Temp. Temp.
a Q) (°c) (°c) (°c)
US06 PHEV CDCS 30 a5 121 29 84
US06 PHEV CDCS 40 52 122 30 97

+ The recent U.S. DRIVE RFP! limits the cell-to-cell temperature in a PHEV pack to less than 3°C. In this
pack the cell-to-cell temperature difference is greater than 12°C.

+ If not properly designed, [ It temperature
spread. These temperature differences affect the cycle life of each cell, potentially resulting in
warranty issues.

Identify best solutions to reduce cell-to-cell
temperature variations within a pack in order to
extend life

Minimize parasitic power draws due to the thermal
management system

Investigate new solutions for the thermal management
of batteries such as phase change material, new
refrigerants, etc.
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