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Degradation mechanisms and lifetime prediction for lithium-
ion batteries – A control perspective 

Kandler Smith,1 Member, IEEE, Ying Shi,2 Member, IEEE, and Shriram Santhanagopalan,3 Member, IEEE 

 Abstract—Predictive models of Li-ion battery lifetime must 
consider a multiplicity of electrochemical, thermal, and 
mechanical degradation modes experienced by batteries in 
application environments. To complicate matters, Li-ion 
batteries can experience different degradation trajectories that 
depend on storage and cycling history of the application 
environment. Rates of degradation are controlled by factors 
such as temperature history, electrochemical operating 
window, and charge/discharge rate. We present a generalized 
battery life prognostic model framework for battery systems 
design and control. The model framework consists of trial 
functions that are statistically regressed to Li-ion cell life 
datasets wherein the cells have been aged under different levels 
of stress. Degradation mechanisms and rate laws dependent on 
temperature, storage, and cycling condition are regressed to 
the data, with multiple model hypotheses evaluated and the 
best model down-selected based on statistics. The resulting life 
prognostic model, implemented in state variable form, is 
extensible to arbitrary real-world scenarios. The model is 
applicable in real-time control algorithms to maximize battery 
life and performance. We discuss efforts to reduce lifetime 
prediction error and accommodate its inevitable impact in 
controller design. 

Index Terms—battery, degradation, diagnostics, energy 
storage, lithium-ion, prognostics 

I.  EXTENDED ABSTRACT 
LECTROCHEMICAL energy storage is rapidly 
expanding beyond mobile devices into large-scale grid 

and automotive applications. Lithium-ion battery production 
is projected to grow to a $5 billion business by 2020 [1]. To 
support this expanded investment, lifetime predictive 
models are needed that accurately calculate battery excess 
energy/power needed to meet life requirements [2], perform 
warranty analyses, and design thermal management systems 
and onboard control strategies that extend lifetime [3–7]. 

The goal of a lifetime predictive model is to reproduce 
device-level capacity fade and resistance growth across the 
full range of possible storage- and cycle-aging conditions 
observed in the field and during accelerated aging tests in 
the laboratory. Model-predicted capacity and resistance 
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allow for direct calculation of the device’s energy and 
power [2] over lifetime. The resistance/capacity error 
between the model and experimental measurement must be 
minimized because any model uncertainty adds expense to 
the system due to over-design. The ideal model should have 
a sound physical basis in the electrochemical literature and 
be supported by electrochemical diagnostic measurements 
to provide the widest extensibility of predictions versus 
tested conditions. 

Existing literature related to degradation and lifetime 
modeling can generally be divided into two categories. In 
one category, physics-based models are proposed that 
capture one or two degradation mechanisms and are 
sometimes validated with a few aging tests. In the other 
category, lumped statistical models are proposed and fitted 
to data, sometimes for a wide range of aging tests. These 
statistical models generally include a mixture of physics-
justified surrogate models and semi-empirical mathematical 
formulas to capture the full behavior of the large dataset [8–
10]. There are strong motivators to reduce the empiricism 
by diagnosing and proposing new mathematical models of 
physical degradation processes. For lifetime models, 
reduced empiricism will maximize model extensibility, 
minimize the expense of aging experiments required to 
parameterize the model, and provide the proper couplings to 
model degradation within computer-aided engineering 
software toolsets for electrochemical cell design [11–14]. 

Based on experience with multiple Li-ion aging datasets, 
on the order of five different degradation mechanisms must 
be included in a model to faithfully reproduce resistance 
and capacity fade trajectories for a large matrix of some 20–
30 aging test conditions. Although it is beyond the scope of 
this paper to review all of the possible degradation 
mechanisms in lithium-ion cells, Table 1 presents several 
broad categories of degradation mechanisms, including their 
dependence on mechanical-, chemical-, electrochemical-, 
and thermal-coupled physics.  

For lithium-ion chemistries with graphitic negative 
electrodes, the growth of the solid-electrolyte interphase 
(SEI) layer is usually a dominant degradation mechanism. 
SEI layer growth increases the cell’s impedance and reduces 
its capacity as it consumes cycleable lithium from the 
system. Detailed elementary (electro)chemical reaction 
models [16] provide a framework for studying the complex 
SEI formation and growth processes. Simple models of rate- 
limiting steps in the SEI growth process are available 
however, and they can accurately reproduce measured 
performance fade under storage conditions [10,17]. 

E 
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TABLE I 
LI-ION BATTERY FAILURE MODES CHARACTERIZED BY THEIR PHYSICS [15] 

 
Mechanical •  Failure of cell structures and packaging 

•  Characterized with mechanical deformation and vibration tests, readily accelerated with 
magnitude and rapid accumulation of cycles 

Chemical •  Side reactions occurring during rest 
•  Rate-dependent on temperature and chemical state 
•  Characterized by storage tests, accelerated with elevated temperature, at various chemical states, 

including full charge/discharge extremes 
Electrochemical •  Side reactions driven by charge rate (sometimes discharge rate) 

•  Influenced by electrical cycling on the cell, with rate influenced by temperature-dependent 
reaction and transport properties 

•  Characterized by accelerated cycling in the temperature and potential window exciting the 
reaction 

Electrochemo-
mechanical  

•  Degradation caused by material expansion/contraction during electrochemical-thermal cycling 
•  Influenced by material properties of system, occurrence of phase changes with cycling, 

packaging, external body forces, charge/discharge rate, temperature, chemical state, and 
mechanical damage state 

•  Characterized by accelerated cycling across a matrix of relevant duty cycles 
Thermal 
coupling 

•  Impacting all of the above by accelerating (electro)chemical reaction rates at high temperatures, 
impeding normal transport/reaction processes at low temperatures, and causing mechanical 
stresses due to thermal expansion/contraction of cell components 

•  Characterized by performing aging tests at 3–5 temperatures including cold and hot extremes 
 
The limiting step of electrolyte solvent diffusion provides a 
convenient analytical solution whereby capacity fade and 
resistance growth follow a square-root-of-time trajectory. 
Fade rate is rapid at beginning of life (BOL), but then 
gradually slows down. Aside from SEI growth, high-voltage 
lithium-ion systems may also suffer from electrolyte 
oxidation at the positive; however, this degradation 
mechanism is thought to be small for the lower-voltage iron-
phosphate positive electrode material. 

Although calendar-life models have shown reasonable 
promise in predicting aging under storage conditions, cycle-
life models  
have yet to offer any accepted method to predict capacity 
fade for a wide range of cycling and environmental 
conditions. Coulombic throughput or energy throughput are 
sometimes used as proxies to describe mechanical-stress-
induced fade and are regressed to experimental capacity data 
[9,18]. These models can be difficult to extend to a wide 
range of cycling conditions [19]. 

Several plausible physical models coupling mechanical 
stress with electrochemical cycling have been proposed. The 
mechanism of particle fracture due to diffusion-induced 
stress of lithium intercalation has been modeled at the 
particle [20] and electrode length-scales [21]. A coupling 
between mechanical fracture and electrochemical transport 
[22] was proposed to capture the impact of stress/fracture on 
capacity fade. That model suggests that electrochemo-
mechanical-driven capacity loss saturates after the first 
several (dis)charge cycles, in a sort of break-in process. 
However, some data seem to indicate that a more continuous 
degradation process evolves throughout life due to 

electrochemo-mechanical fatigue [8]. Deshpande et al. 
proposed a model of electrochemo-mechanical-coupled 
fatigue wherein diffusion-induced strain at the negative 
particle surface causes microcracks in the SEI layer, 
exposing fresh negative surface for new SEI formation [23]. 
The Deshpande model captures a rapid fade rate at BOL, a 
decelerating fade rate at middle of life, transitioning to a 
sudden accelerating fade rate at end of life (EOL). 

These various models track capacity fade due to lithium 
loss, active site damage/loss, or some combination of the 
two. It is unclear which mechanism is dominant, and in what 
manner the mechanisms are coupled. Different implications 
arise depending on which mechanism is assumed to 
dominate and its coupling with measured capacity. 
Remaining capacity may track with (i) a summation of 
calendar and cycling degradation effects [9], (ii) the greater 
of calendar degradation or cycling degradation [8], or (iii) a 
multiplicative coupling between calendar and cycling 
degradation [23]. The proper separation and coupling of 
calendar- and cycling-driven mechanisms is important to 
achieve in both life models and aging experiments. Using 6–
12 months of data from accelerated aging experiments, a life 
predictive model needs to accurately extrapolate degradation 
for the desired 10–15-year lifetime. The model must 
faithfully reproduce storage degradation, accelerated cycling 
degradation, and partially accelerated cycling degradation 
where data are available. 

The full presentation briefly reviews three Li-ion battery 
capacity fade models from the literature, each physically 
plausible, but with different couplings between calendar and 
cycling degradation. A generalized model framework is 
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introduced that captures the major degradation mechanisms 
from those literature models. A procedure is proposed for 
down selecting the most statistically relevant life predictive 
models from multiple hypotheses. The procedure is applied 
to aging data for the Li-ion graphite/iron-phosphate 
chemistry, creating a life prognostic model. Two separate 
control applications are presented that apply similar life 
prognostic models for other Li-ion chemistries in a hybrid-
electric vehicle (HEV) supervisory controller and a plug-in 
hybrid vehicle (PHEV) active cell balancing system. Goals 
of those respective control studies are to downsize the HEV 
battery by 50% and still meet a 10-year lifetime requirement, 
and to extend the life of the PHEV battery by 20%. 
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