
Abstract
Fast charging is attractive to battery electric vehicle (BEV) drivers 
for its ability to enable long-distance travel and to quickly recharge 
depleted batteries on short notice. However, such aggressive charging 
and the sustained vehicle operation that results could lead to 
excessive battery temperatures and degradation. Properly assessing 
the consequences of fast charging requires accounting for disparate 
cycling, heating, and aging of individual cells in large BEV packs 
when subjected to realistic travel patterns, usage of fast chargers, and 
climates over long durations (i.e., years). The U.S. Department of 
Energy's Vehicle Technologies Office has supported the National 
Renewable Energy Laboratory's development of BLAST-V-the 
Battery Lifetime Analysis and Simulation Tool for Vehicles-to create 
a tool capable of accounting for all of these factors. We present on the 
findings of applying this tool to realistic fast charge scenarios. The 
effects of different travel patterns, climates, battery sizes, battery 
thermal management systems, and other factors on battery 
performance and degradation are presented. We find that the impact 
of realistic fast charging on battery degradation is minimal for most 
drivers, due to the low frequency of use. However, in the absence of 
active battery cooling systems, a driver's desired utilization of a BEV 
and fast charging infrastructure can result in unsafe peak battery 
temperatures. We find that active battery cooling systems can control 
peak battery temperatures to safe limits while allowing the desired 
use of the vehicle.

Introduction
Fast charging is attractive to battery electric vehicle (BEV) drivers 
for its ability to enable long-distance travel and to quickly recharge 
depleted batteries on short notice. However, such aggressive charging 
and the sustained vehicle operation that results could lead to 
excessive battery temperatures and degradation. Properly assessing 
the consequences of fast charging requires accounting for disparate 
cycling, heating, and aging of individual cells in large BEV packs 
when subjected to realistic travel patterns, usage of fast chargers, and 
climates over long durations (i.e., years).

In the literature, the impact of high charge rates representative of 
BEV fast charging on the electrochemical degradation and thermal 
response of lithium-ion cells has been studied significantly [1, 2, 3, 4, 
5, 6]. However, such studies generally do not treat the thermal effects 
of operation at the pack level (where cell temperatures can be 
significantly elevated) and often employ single or repeated full 
depth-of-discharge fast charge cycles over accelerated test periods 
that do not address the low frequency of occurrence and partial depth-
of-discharge cycling expected to occur with BEVs in the real world. 
Few studies have been published addressing placement strategies for 
fast chargers. The majority that do exist focus on the interaction of 
the chargers with the electricity grid [7-8], fewer still address optimal 
placement with respect to vehicle utility [9].

The U.S. Department of Energy's Vehicle Technologies Office has 
supported the National Renewable Energy Laboratory's (NREL's) 
development of BLAST-V-the Battery Lifetime Analysis and 
Simulation Tool for Vehicles-to create a tool capable of connecting all 
of the factors necessary to make a detailed assessment of the battery 
requirements for and vehicle utility impacts of BEV fast charging in 
real-world settings. We present the development of the BLAST-V tool 
and our findings in realistic fast charge scenarios. The effects of 
different travel patterns, climates, battery sizes, battery thermal 
management systems (BTMSs), and other factors on battery 
performance and degradation are presented.

Analysis
BLAST-V was used to simulate the response of a BEV with and 
without access to fast charging to assess its impacts on the battery. 
NREL's BLAST-V is an electric vehicle simulator focused on 
computing long-term effects of complex operational scenarios on 
vehicle utility and battery performance. It considers the vehicle 
powertrain, battery control strategy, driving and charging patterns, 
local climate, the vehicle-battery-environment thermal system, 
battery chemistry, and other factors in computing short-term vehicle 
and battery performance (e.g., vehicle range, battery voltage, state of 
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Figure 1. Graphical illustration of BLAST-V simulation algorithms

charge (SOC), and temperature) and long-term vehicle utility and 
battery degradation. An approximate graphical representation of the 
key elements and flow of data within BLAST-V is illustrated in 
Figure 1. Further detail on the methods employed in this simulation 
can be found in [10-11].

Prediction of battery degradation in response to arbitrary operating 
conditions is currently a working area of research in the battery 
community. Many models that do so are empirically based, 
interpolating between or extrapolating from different sets of 
measured battery capacity and resistance data sets [12, 13, 14]. These 
models require extensively large amounts of data and are often 
inadequate for extrapolating beyond the duration of the life test data 
upon which they are based. Alternatively, first-principles models have 
been proposed, but can be exceedingly complex and limited in scope 
to a narrow range of operating conditions [14, 15, 16, 17]. NREL has 
developed a semi-empirical life model that attempts to bridge this 
gap, offering a combination of increased confidence in interpolations 
and projections while maintaining simplicity of implementation and a 
basis in actual laboratory data [18]. BLAST-V incorporates the NREL 
model for a lithium-ion cell with a nickel-cobalt-aluminum cathode 
and graphite anode to supply a representative model of battery 
degradation. Recent updates enable BLAST-V to simulate individual 
cells within a pack, deploying this degradation model in a highly 
parallel fashion to investigate heterogeneous cell aging. Another 
important aspect of BLAST-V is the determination of which trips to 
take with a BEV and which to forgo. As input driving patterns are 
generally sourced from real-world operation of conventional vehicles, 
certain trips (and sequences of trips) will exceed the driving range of 
the simulated BEV and result in full battery depletion. Given the cost 
and inconvenience associated with stranded vehicles, BLAST-V 
assumes BEV drivers will rely on conservative estimates of vehicle 
range and a detailed knowledge of travel itineraries to avoid running 
out of charge mid-trip.

BLAST-V structures travel data as a sequence of tours. A tour 
consists of consecutive trips with the first trip beginning and the last 
trip ending at the vehicle's home location (with assumed access to 
charging). Prior to the start of each tour, BLAST-V considers the 
battery's current SOC, distance and expected duration of pending 
trips in the tour, historical depletion rates from similar trips, and 
availability of work/public chargers to estimate battery SOC 
throughout the potential tour. This estimation informs a go/no-go 
decision at the beginning of each tour.

If the estimated SOC is maintained above a specified threshold for 
the entirety of the tour, the simulated driver selects the BEV for travel 
and the tour is simulated in greater detail considering electrical, 
thermal, and life models of the battery pack. However, if the SOC is 
estimated to deplete below the specified threshold, the driver forgoes 
use of the BEV, and electrical, thermal, and life models of the battery 
pack are simulated with the vehicle in its parked mode for the 
duration of the tour. BLAST-V's go/no-go decision for determining 
BEV travel is believed to mirror the way that real-world drivers make 
personal travel decisions. By implementing a low-order planning 
model prior to tour evaluation, BLAST-V simulates the hundreds of 
tour decisions a driver makes every year when determining whether 
their BEV is suitable for a particular tour.

In situations where the estimated battery SOC is not predicted to be 
maintained above the driver's required threshold, BLAST-V now 
includes the capability to consider alternate paths of travel and stops 
at available direct current fast charger (DCFC) stations [19].

If BLAST-V's rerouting algorithm is able to successfully identify a 
revised travel plan that maintains estimated battery SOC above the 
driver's minimum requirement, statistics on the rerouted tour are 
recorded (e.g., number of DCFC stops, duration of DCFC stops, 
incremental distance relative to original tour) and the rerouted tour is 



simulated in greater detail. However, if an adequate alternate tour is 
not identified, the driver forgoes use of the BEV, and electrical, 
thermal, and life models of the battery pack are simulated with the 
vehicle in its parked mode for the duration of the tour.

For illustrative purposes, consider the details of the tour shown in 
Figures 2 and 3. Figure 2 shows the tour path consisting of four 
separate trips for a total of 106 miles. When simulated with a BEV 
with a 75-mile range (BEV75), the estimated battery SOC falls below 
a predefined driver tolerance of 15% midway through the third trip. 
Because the estimated battery SOC does not stay above the driver's 
required threshold, BLAST-V considers potential mid-trip stops at 
DCFC stations for charging. Figure 2 also shows a one-mile buffer 
around the path of travel (only stations within this buffer are 
considered), all available DCFC stations in the simulation, and DCFC 
stations selected for mid-trip charging stops. Travel itineraries and 
estimated battery SOC for the original tour and the rerouted tour with 
one DCFC stop are shown in Figure 2. By inserting a 17-minute 
DCFC stop midway through Trip 3, the estimated battery SOC is 
maintained above the driver's required threshold for the entire tour.

Figure 2. Example tour overlaid with available and utilized DCFC stations

Figure 3. Example original and rerouted travel itineraries and estimated 
battery SOC

Simulation Parameters
Historical travel data from the Puget Sound Regional Council's Traffic 
Choices Study [20] was processed per [10] to yield 317 real-world travel 
histories, each consisting of 365 continuous days of continuous data. We 
then filtered these histories to those that accrued 8,000 miles or more 
over this one-year period for simulation to focus on higher mileage 

drivers. All 317 histories are plotted in Figure 4 to show the utility factor 
and the annual mileage they would achieve driving a BEV75 without fast 
charging. The black points to the upper left of the diagonal line represent 
the 137 drivers that completed less than 8,000 miles in a conventional 
vehicle and are therefore excluded from this study. The 91 drivers boxed 
in the upper right corner of the plot represent those that both completed 
more than 8,000 miles and achieved a utility factor greater than 80% in 
the BEV75. Arguably, these drivers are well suited to such a BEV 
without fast charging, but are still included. The remaining 89 drivers are 
high-mileage drivers that achieve low utility factors with a BEV75, and 
thus drivers that could benefit significantly from range extension 
methods like fast charging.

Figure 4. Trip distance, daily distance, annual distance, and trip average speed 
distributions for all 317 vehicle histories

The effects of two different climates were studied. Seattle, 
Washington, was selected as it is coincident with the travel data and 
represents a relatively moderate climate. Phoenix, Arizona, was 
selected to represent an aggressively hot climate to explore the 
impact of high environmental temperatures. Typical meteorological 
year data (consisting of both ambient temperature and solar 
irradiance) for both locations is taken from [21], and ambient 
temperatures are illustrated in Figure 5.

Figure 5. Ambient temperature data for Seattle and Phoenix

We employ a mid-size sedan with technology and performance levels 
anticipated for a 2020 model year vehicle. We used FASTSim [22] to 
simulate the vehicle response to the Urban Dynamometer Driving 
Schedule and Highway Fuel Economy Driving Schedule drive cycles, 
the results of which are weighted and combined per [23] to 
approximate the EPA rated range. We further employed FASTSim to 



simulate the vehicle's response to NREL's Drive-Cycle Rapid 
Investigation, Visualization, and Evaluation (DRIVE) cycle to 
calculate the vehicle's real-world efficiency [24]. Note that within 
BLAST-V simulations, auxiliary loads for vehicle heating, 
ventilating, and air conditioning and BTMS are added separately. 
Vehicle parameters are given in Table 1.

Table 1. Vehicle Parameters

Two different battery models were employed in this study, both based 
on an equivalent circuit model of a lithium-ion battery chemistry 
employing a nickel-cobalt-aluminum cathode and graphite anode. 
Further details on the voltage and resistance characteristics of this 
model are given in [10]. In the first model, a single-cell 
approximation was used. This effectively assumes that all cells in the 
pack behave identically with respect to electrical, thermal, and 
degradation response. We used this model to investigate the 
difference between three different BTMSs: one with only passive 
thermal control, one with active cooling when driving, and one with 
active cooling when driving and charging. Additional details on the 
cooling system specifications are given in [10].

The second model segregates electrical and degradation responses 
into 100 individual cells. Initial cell properties are shown in Table 2. 
Thermal response is treated by creating three cell groupings, 
assuming temperature is constant across cells within each group, but 
allowing the temperature of the group to diverge. Thermal properties 
have been selected to approximately represent the minimum, average, 
and maximum cell temperatures as observed in field data of a similar 
BEV [25]. This model will be employed to demonstrate pack 
behavior, including internal variation, in response to aggressive fast 
charger use. The same three BTMS options as employed for the 
single cell model are maintained for this model.

Table 2. Distributed Battery Model Initial Conditions

For vehicle charging, we assume a Level 2 charger (6.6 kW AC) is 
installed at each driver's home and is used in an “opportunity” mode 
(i.e., whenever the driver is at home, the vehicle is plugged in and 
charging). A public network of 50 kW DCFCs is placed as shown in 
Figure 6, coincident with the 34 DCFCs existing in the state of 

Washington as of January 2014 [26]. An additional 306 DCFCs are 
included outside of the state as well and are available for use in these 
simulations; however, their utilization is generally low.

The tour planning algorithm discussed in the previous section is 
employed. A 1-mile radius search zone around the most efficient path 
of travel is used to identify candidate chargers. A 15% minimum 
battery SOC limit is used to address range anxiety effects (i.e., the 
algorithm will utilize DCFC such that battery SOC stays above 15%). 
We further enforce a “depart on time” requirement that maintains the 
departure time of each trip in a tour. The arrival time at any given 
location can be delayed by DCFC usage, but only up to the point that 
it equals the subsequent departure time.

Figure 6. Existing DCFC Stations (source: NREL Alternative Fuels Data 
Center, January 2014 [26]) (Google Maps credit: © 2014 Google, Map Data © 
2014 Tele Atlas [27])

Baseline Simulations
Baseline simulations were run using the Seattle climate and a 
single-cell battery model to check the typical usage of DCFCs 
resulting from our implemented methodologies and assumptions. 
Data for these simulations are presented in Figures 7, 8, 9. These 
results show that most drivers use fast chargers 10 times per year or 
less, but extreme cases can reach up to eight times per month. This 
results in relatively small fractions of total BEV electricity coming 
from DCFCs, typically less than 10%. When visiting a DCFC, we 
predict that drivers will arrive with a battery SOC of 18 to 60% and 



stay between 10 and 22 minutes. Although data on real-world usage 
of DCFCs are sparse, this appears to agree reasonably well with data 
reported by the EV Project [28, 29, 30].

Figure 7. Simulated DCFC usage frequency

Figure 8. Simulated percent of energy acquired from DCFCs

Figure 9. Simulated DCFC dwell time as a function of arrival SOC

Results: Single Node Model
The effects of three different BTMS in two climates (Seattle and 
Phoenix) were simulated using our single-cell battery model. For 
comparison, we simulated cases both with and without the 
availability of DCFCs. All other variables between simulations are 
equivalent.

Figure 10 shows the effects of these variables on time-averaged 
battery temperatures for Seattle and Phoenix. The height of the bars 
indicates the median of time-averaged battery temperature across all 
180 simulated travel histories. The whiskers indicate the minimum 
and maximum time-averaged battery temperatures across all 180 
simulated travel histories. In Seattle, neither the use of DCFCs nor 
the variation of the BTMSs has any significant effect on time-
averaged battery temperatures for the median driver. For the most 
extreme travel history that results in the largest time-averaged battery 
temperature, the addition of DCFC can increase time-averaged 
battery temperature by 2°C-3°C in the presence of a passive BTMS. 
Where an active BTMS is present, this effect is largely unnoticeable.

Similar trends in time-averaged battery temperature are seen in the 
Phoenix data when comparing the absence and presence of DCFCs. 
However, the difference between BTMSs is much more apparent: the 
presence of active cooling while driving and the additional use of that 
system in standby mode at a charger noticeably reduce the average 
battery temperature.

Figure 10. Effect of DCFCs and BTMSs on average battery temperature in 
Seattle (top) and Phoenix (bottom)

As in our past studies that have shown that BEV battery life is often 
dependent on calendar fade mechanisms rather than cycling fade 
mechanisms [10-11], we find that these trends in time-averaged 
battery temperatures translate almost directly to battery capacity loss. 



As shown in Figure 11, we see little impact of DCFC on capacity loss 
in either Seattle or Phoenix; however, in Phoenix we see a significant 
impact of BTMS on capacity.

Figure 11. Effect of DCFCs and BTMSs on battery capacity loss in Seattle 
(top) and Phoenix (bottom)

While the nearly negligible impact of DCFC usage on battery 
capacity fade may be surprising to some, it is important to point out 
that DCFCs are used quite sparingly in our driver histories. Most 
drivers use a DCFC less than once per month (Figure 6), and when 
they are utilized, they typically charge the battery less than 60% 
(Figure 9). Further, recent tests where DCFCs are used twice per day 
to charge Nissan LEAFs driving in Phoenix have shown that the 
difference in capacity loss due to fast charger use (as compared to an 
otherwise identical case using Level 2 charging) after 50,000 miles of 
driving is less than 3% [31]. Thus, our results employing more 
realistic, less aggressive fast charging habits is to be expected. We do 
note, however, that it is possible that alternative battery chemistries 
not addressed herein could sustain considerable losses in capacity or 
increases in resistance due to such low frequency DCFC usage (e.g., 
via particle fracture). Clearly, it would not be advisable to 
recommend fast charging such chemistries, and thus analysis of such 
cases is not addressed herein.

Where the effect of DCFC use is most noticeable is in the maximum 
achieved battery temperature. As shown in Figure 12, comparison of 
cases with and without DCFC availability shows that maximum battery 
temperatures are ∼15°C higher for the median driver when fast 
charging is employed with a passive BTMS. In the presence of fast 
charging, our simulated maximum battery temperatures regularly 
exceed 45°C in Seattle and 60°C in Phoenix, so high that they could 
pose a safety risk if charging and/or driving is not impeded by onboard 
vehicle control systems. The addition of active battery cooling, 
however, can significantly moderate maximum battery temperatures, 
especially when employed both while driving and charging.

Figure 12. Effect of DCFCs and BTMS on maximum battery temperature in 
Seattle (top) and Phoenix (bottom)

Results: Multi-Node Model
To look more closely at the impact of DCFC on maximum battery 
temperature, we upgraded our battery model to the multi-node model. 
We restricted our study to the Phoenix climate on the basis that 
automotive manufacturers will need to design their vehicles to the 
worst-case environment. While we simulated all 180 travel histories, 



Figure 13. Single vehicle thermal response in Phoenix with passive BTMS

Figure 14. Single vehicle thermal response in Phoenix with passive BTMS (close-up); transparent green and red tiles overlaid on driving and DCFC events, respectively

we began with the presentation of a single vehicle to illustrate how 
fast charger use affects maximum battery temperatures, as shown in 
Figure 13. Note that there are five occasions over the course of the 
year at which the simulated battery temperature exceeds 70°C, and 
two that exceed 100°C.

When viewing these results, it is important to recognize that 
BLAST-V is calibrated to simulate nominal thermal response. In 
cases such as these where battery temperature becomes excessive, the 
accuracy of the thermal model is likely to suffer. Further, battery 
degradation and abuse response at such high temperatures are not 
accounted for. Thus, the primary value of these simulations is to 
conclude that reaching such temperatures is possible and must be 
controlled, not to precisely quantify the effects of such conditions (we 
assume they are unacceptable).

Zooming in on one of these events (Figure 14) illustrates the cause of 
such high temperature excursions: repeated back-to-back drive and 
charge events with short or no rests in between. Not only does the 
presence of fast charging allow vehicles to travel further more 
continuously than is otherwise possible in its absence, but the fast 
charging itself is shown to elevate battery temperature at a faster rate 
than driving (compare, for example, an estimated battery discharge 
power of 18 kW when driving at 300 Wh/mi and 60 mi/hr to a fast 

charge rate of 50 kW). Thus, it is not unreasonable that a battery and 
BTMS designed for use without fast charging could overheat when 
this option is presented.

In Figure 15, we present the data for the same tour but with a BTMS 
with active cooling operated in both driving and standby modes. The 
effect on battery temperature is immediately apparent: the maximum 
battery temperature is constrained to less than 30°C.

Finally, we explore the variation in cell state of health within packs 
following 10 years of automotive service. Here we employ the 
multi-cell model only with the active BTMS operated during driving 
and standby, having recognized its necessity in the preceding 
investigation. Results for maximum thermal gradients presented in 
Figure 16 show that such gradients regularly exceed 11°C in the 
presence of fast charging. Such gradients, if sustained for long 
periods of time, would be expected to create large variations in cell 
state of health within a pack, which would then limit the utility of the 
vehicle.

The results for capacity fade and resistance growth are presented in 
Figures 17 and 18, respectively. In each plot, an individual red and 
blue box plot is given for each travel history providing the maximum, 
75th percentile, 50th percentile (median), 25th percentile, and 



Figure 15. Single vehicle thermal response in Phoenix, AZ with active BTMS during driving and standby (close-up)

Figure 16. Maximum battery thermal gradients

Figure 17. Capacity loss and variation within packs

minimum capacity fade (or resistance growth) of cells within the 
pack. The red whiskers represent the maximum and minimum. From 
these results we see that the amount of variation (either capacity fade 
or resistance growth) within each pack is fairly consistent across 
drive patterns at ±2.5% capacity fade and ±3.5% resistance growth. 

This would appear to indicate that the maximum thermal gradients in 
Figure 16 are sufficiently temporary in duration as to have minimal 
effect on heterogeneous battery wear. However, the total amount of 
capacity fade and resistance growth can vary considerably across 
different drive patterns (resistance much more so than capacity).



Figure 18. Resistance growth and variation within packs

Conclusions
In our study of the impact of realistic fast charging on simulated 
battery electrical, thermal, and degradation response we found that 
battery degradation is minimally affected for most drivers due to the 
low frequency of use. The largest challenge presented by fast 
charging to the battery is its effect on maximum battery temperature. 
In the presence of a passive BTMS, maximum battery temperatures 
can exceed safe operating limits due to repeated drive-charge 
sequences with short or no rests in between. However, this can be 
controlled by using BTMSs with active cooling capabilities or 
onboard vehicle controllers limiting charging and driving activities. 
The prior option is expected to be much more attractive in terms of 
driver satisfaction.
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Definitions/Abbreviations
BEV - battery electric vehicle

BEV75 - battery electric vehicle with 75-mile range

BLAST-V - Battery Lifetime Analysis and Simulation Tool for 
Vehicles

BTMS - Battery Thermal Management System

DCFC - direct current fast charger

HVAC - heating, ventilation, and air conditioning

kWh - kilowatt-hour(s)

NREL - National Renewable Energy Laboratory

SOC - state of charge

VMT - vehicle miles traveled
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