
INTRODUCTION
Increased market share of plug-in electric vehicles (PEVs) is one 
major strategy to reduce the nation's dependence on foreign oil and 
emissions of greenhouse gases by improving the overall fuel 
efficiency and cleanliness of vehicles in the United States. 
Accelerated market penetration of PEVs is presently restricted by the 
high cost of batteries, however. It has been estimated that an 
approximate 50% reduction in 2010 battery costs is necessary to 
equalize the economics of owning PEVs and conventionally fueled 
vehicles [1, 2].

Deployment of grid-connected energy storage systems, which could 
increase the reliability, efficiency, and cleanliness of the grid, is 
similarly inhibited by the cost of batteries. Over the past few years, 
mandates and incentives for energy storage have increased 
dramatically to overcome this barrier. For example, in 2010 the 
California legislature passed Assembly Bill 2514, which resulted in 
the California Public Utilities Commission releasing a procurement 
target for 1.3 gigawatts (GW) of energy storage in the state by 2020 
[3]. Approximately 15% of this allotment has been planned for 
customer-sited, behind-the-meter storage [4], further encouraged by 
California's self-generation incentive program, which offers up to 
$1.62 per watt installed [5].

Research, development, and manufacturing ramp-up efforts are 
underway to reduce battery costs by lowering material costs, 
enhancing process efficiencies, and increasing production volumes. 
However, it is also advisable to pursue increasing the total value of 
services provided by a battery over its lifetime. As PEV batteries may 
have substantial performance capability left at the end of their 
automotive service life, additional value could be extracted by 
committing them to other energy storage applications post automotive 
use, such as grid-connected services, including area regulation, 
backup power, or demand charge management. By extracting 
additional services and revenue from the battery in this post-vehicle 
application, the total lifetime value of the battery is increased, and the 
cost of the battery can be shared between the primary and secondary 
users. We refer to such strategies herein as Battery Second Use 
(B2U).

Many factors will determine the viability and economics of B2U 
strategies, from the costs of repurposing processes to the evolution of 
competing battery technologies. One of the most important factors in 
this equation is battery degradation in both the first (automotive) and 
second service lives. Herein we present the methodologies and tools 
developed by the National Renewable Energy Laboratory (NREL) 
under funding from the U.S. Department of Energy's Vehicle 
Technologies Office to provide the necessary understanding of 
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battery degradation. We also present their application to a specific 
lithium ion chemistry (consisting of a nickel-cobalt-aluminum 
cathode and graphite anode) and example PEVs to explore likely 
outcomes.

ANALYSIS
First we introduce our method for calculating battery degradation as a 
function of operating conditions. Next we discuss the motivation for 
and timing of battery replacement when in automotive service, 
leveraging our past studies that combined the battery degradation 
model with an automotive techno-economic analysis tool. 
Subsequently, we couple the battery degradation tool with an 
advanced long-term vehicle simulator to calculate expected battery 
wear during automotive service for different drive patterns, vehicle 
platforms, and climates. We then calculate the remaining life of these 
batteries when put to use under an anticipated second use duty cycle 
and discuss how this translates to remaining battery value. Finally, we 
explore practical methods for identifying second use value at the 
point of automotive retirement and its implications on the design of 
PEVs today.

Modeling Battery Degradation
Quantification of the relative amount of remaining performance of a 
battery at any point in time requires an understanding of battery 
degradation. Prediction of battery degradation to arbitrary operating 
conditions is currently a working area of research in the battery 
community. Many models that do so are empirically based, 
interpolating between or extrapolating from different sets of 
measured battery capacity and resistance data sets [6, 7, 8]. These 
suffer from extensively large data needs and are often inadequate for 
extrapolating beyond the duration of the life test data upon which 
they are based. Alternatively, physics-based, first-principles models 
have been proposed, but can be exceedingly complex and limited in 
scope to a narrow range of operating conditions [9, 10, 11].

NREL has developed a semi-empirical life model that attempts to 
bridge this gap, offering a combination of increased confidence in 
interpolations and projections while maintaining simplicity of 
implementation and a basis in actual laboratory data [12]. It 
separately accounts for both capacity and resistance effects induced 
by cycling-based and calendar-based mechanisms. Cycling-based 
mechanisms specifically address the effect of charging and 
discharging the battery, while calendar-based mechanism address 
degradation that occurs even in the absence of current flow. Nonlinear 
effects of time, temperature, depth of discharge (DOD), and state of 
charge (SOC) are included. The specific model employed herein is fit 
to an extensive set of degradation data for a lithium-ion cell with a 
nickel-cobalt-aluminum cathode and graphite anode. We apply this 
model within an assumed 15-year vehicle life, at which point 
approximately 67% of all vehicles have been removed from service 
[13].

Battery Replacement in Automotive Service
An understanding of the time and state of health (SOH) of a PEV 
battery when it is removed from automotive service is also critical to 
calculating remaining battery performance. This requires knowledge 
of PEV battery replacement decisions, which can be made on 
multiple bases. In cases where the battery warranty ensures some 
minimum available performance criteria, the replacement decision 
may be straightforward. Vehicle leasing that entails similar 
performance guarantees would also be straightforward. At the time of 
writing, the 2014 Chevrolet Volt propulsion battery is warrantied to 
stay above 70% capacity during its 8-year/100,000-mile term [14]. 
The 2014 Nissan LEAF battery is similarly warrantied over a 
5-year/60,000-mile term [15]. Nissan also offers a battery warranty 
extension for $100/month that can be extended for the total lifetime 
of the vehicle [16].

Where this is not the case and the vehicle is owned by its user, the 
majority of battery replacement decisions will be made by that user. 
The user's motivation for battery replacement may be (1) improved 
acceleration, (2) increased interior volume within the vehicle, (3) 
increased electric range of the vehicle, (4) decreased fuel costs, or (5) 
increased resale value. Our analyses suggest that vehicle acceleration 
is most likely limited by inverter and motor selection throughout the 
life of the vehicle, not the battery. Recovering additional interior 
volume following installation of a smaller battery would require 
considerable modification to a vehicle beyond battery replacement. 
Thus, motivations 1 and 2 are ruled out on the basis that these 
scenarios are expected to occur infrequently. Motivations 3, 4, and 5, 
on the other hand, are all viable, and all have quantifiable economic 
implications to the user (increased range leads to more miles driven 
on electricity rather than more expensive fossil fuels).

Thus, it is reasonable to assume that batteries will be replaced when 
either (1) a warranty (or similar) performance level is breached, or (2) 
there is an economic motivation for the user-owner to do so. Previous 
studies on battery degradation with NREL's Battery Ownership 
Model and the Battery Lifetime Analysis and Simulation Tool for 
Vehicles (BLAST-V)-advanced techno-economic simulators for 
PEVs employing the aforementioned battery degradation model-have 
found it likely that (1) PEV batteries will retain more than 70% of 
their original performance over the first 8 years of operation, and (2) 
replacing batteries within the anticipated 15-year lifetime of a vehicle 
will not be economically justified [17, 18, 19]. While there will be 
exceptions for select high-wear cases (particularly for high-mileage 
drivers in hot climates), they are likely to be a small percentage of the 
total B2U supply stock.

As such, the majority of B2U batteries should be expected to become 
available only at the end of a complete 15-year automotive service 
life, and the subsequent analyses herein shall be restricted to these 
cases.

Battery Degradation in Automotive Service
NREL's BLAST-V was applied to compute the SOH of PEV batteries 
following 15 years of automotive service. This highly detailed PEV 
simulator includes consideration of driver patterns and aggression, 
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climate, cabin thermal dynamics, infrastructure, and many other 
factors to compute the wear incurred by the battery and utility 
delivered to the driver. More detail on the functionality of this tool 
can be found in the BLAST-V documentation [20].

Recent BLAST-V studies have found that driver patterns and climate 
have the largest effect on battery degradation among many other 
factors, including driver aggression, vehicle and battery thermal 
management systems, available infrastructure, etc. [19, 21, 22]. Thus 
BLAST-V is employed herein to predict battery degradation metrics 
for cold (Minneapolis, Minnesota), moderate (Los Angeles, 
California), and hot (Phoenix, Arizona) climates across a set of 91 
year-long PEV-friendly drive patterns. These drive patterns are a 
subset of data recorded from the Puget Sound Regional Council's 
Traffic Choices Study [23], processed per Neubauer and Wood [19], 
that yield a year-one vehicle miles traveled ≥8,000 miles and a utility 
factor ≥80% when driven with a battery electric vehicle (BEV) with a 
75-mile-range (BEV75), as presented in Figure 1.

Note that range of a BEV can vary greatly with operating conditions. 
Our definitions of nameplate range for PEVs are calculated via 
simulation and weighting of drive cycles per [24], which 
approximates the U.S. Environmental Protection Agency-rated range 
of a given vehicle. It is, however, common that our simulated PEVs 
achieve a greater than nameplate range as operating conditions allow.

Figure 1. Utility factor vs. achieved vehicle miles traveled for selected drive 
patterns

For these drivers and climates, two different PEVs are simulated: (1) 
a midsize sedan BEV75, and (2) a midsize sedan plug-in hybrid 
electric vehicle (PHEV) with a 20-mile electric range (PHEV20). The 
BEV75 is equipped with a 22.1-kWh battery that operates between 
100% and 0% SOC. The PHEV20 is equipped with a 7.74-kWh 
battery that operates in charge depleting mode between 100% and 
20% SOC, then switches to charge sustaining mode. The PHEV 
battery is assumed to have 50% lower cell resistance than the BEV 
battery to reflect the higher relative power-to-energy ratio required of 
the PHEV20. Each vehicle employs a heat-pump cabin heater, a 
conventional cabin air conditioner, and an active battery cooling 
system. Further details of the battery and thermal systems models can 
be found in Neubauer and Wood [19].

Road load energy consumption is based upon simulation of NREL's 
Drive-Cycle Rapid Investigation, Visualization, and Evaluation 
(DRIVE) cycle, scaled for normal-aggression drivers and the average 
speed of the specific trip being simulated [19]. Auxiliary loads-
battery thermal management and cabin heating and cooling-are 
computed based on thermal simulations of the vehicle-battery system 
per Neubauer and Wood [19].

We assume that only at-home Level 2 charging (6.6 kW alternating 
current) is available, and that the battery cooling system actively 
cools the battery when at the charger. All vehicles are simulated for 
15 years, our assumed end of automotive service. The vehicle 
simulation specifications are given in Table 1.

Table 1. Vehicle Simulation Specifications

The resultant battery SOH data are presented in Figures 2, 3, 4, 5 for 
all drive patterns. Table 2 presents the median SOH values taken from 
all of the drive patterns.

These data show that for both the BEV75 and PHEV20, capacity loss 
is dominated by calendar effects (Q1), resulting in losses of 25% to 
35% after 15 years of automotive life, depending on climate and 
driving pattern. The effect of climatic differences between 
Minneapolis and Los Angeles is significant, resulting in 4% more Q1 
capacity loss in Los Angeles. The difference between Phoenix and 
Los Angeles is only 1%, however, presumably due to the presence of 
the active cooling system above 20°C. Median Q1 capacity losses are 
approximately 4% higher in the PHEV20 than the BEV75. While the 
cycling effect on capacity (Q2) is much greater (approximately 12%) 
in PHEVs than in BEVs due to the increased frequency of high DOD 
cycling, this has no immediate impact on battery performance or 
value, as the total capacity loss is determined by the greater of Q1 
and Q2, not the sum.

Calendar effects on resistance (R1) are nearly identical for the BEVs 
and PHEVs. In all cases, the 25th to 75th percentile spread is 
extremely small. For the BEV, it is likely that the calendar effects on 
resistance are significantly larger than the cycling effect (R2); 
however, for the PHEV this trend is reversed: cycling effects (R2) are 
much more likely to dominate total resistance growth. As such, total 
resistance growth (the sum of R1 and R2) is much larger in the 
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PHEV20 than the BEV75. The observed effect of climate on 
resistance growth is similar to that of capacity fade: a significant 
difference exists between Minneapolis and Los Angeles, but a 
minimal difference exists between Los Angeles and Phoenix due to 
the set points of the active battery cooling system.

Figure 2. Box plot of BEV75 battery capacity loss due to calendar effects (Q1) 
and cycling effects (Q2); note that the total capacity fade is the greater of Q1 
and Q2

Figure 3. Box plot of BEV75 battery resistance growth due to calendar effects 
(R1) and cycling effects (R2); note that total resistance growth is the sum of 
R1 and R2

Figure 4. Box plot of PHEV20 battery capacity loss due to calendar effects 
(Q1) and cycling effects (Q2); note that the total capacity fade is the greater of 
Q1 and Q2

Figure 5. Box plot of PHEV20 battery resistance growth due to calendar 
effects (R1) and cycling effects (R2); note that total resistance growth is the 
sum of R1 and R2

Table 2. Median Capacity Loss and Resistance Growth Due To Across Driving 
Patterns

Predicting Remaining Battery Performance
While BLAST-V provides predictions of battery capacity fade and 
resistance growth to the end of automotive service, these numbers 
alone are not wholly indicative of remaining battery performance. For 
example, the loss of 25% of initial capacity does not necessarily 
imply that 25% of the battery's value is lost: the battery could operate 
for only a few more cycles before becoming completely unusable, 
which would imply a much larger loss of value, or it may continue 
operate with minimal additional degradation for decades, which 
would imply a much smaller loss of value. As these examples 
illustrate, the remaining performance is also dependent on the number 
of remaining cycles and calendar time.

For the purposes of this study, where the interest in remaining value 
is primarily economic, an economic approach to the calculation of the 
remaining value is called for, such as Neubauer et al.'s Present Value 
of Throughput (PVT) method [25]. This method assumes that the 
battery's owner accumulates D dollars for every kilowatt-hour of 
throughput processed by the battery today, that D is expected to 
escalate at 2.5% per year, and that the owner's discount rate for future 
cash flows is 10% per year. Then, if the battery is operated with any 
arbitrary monthly throughput of xi, for which it is known that the 
battery will last m months, the present value of the battery's 
remaining service life is given by Equation 1.

(1)

Definition of the health factor, kH, in Equation 2 as the ratio of 
remaining PVT of a used automotive battery (PVTU) to that of a new 
battery providing identical service (PVTN) allows comparison of the 
value of a used battery relative to a new one. It is important to 
recognize that “identical service” means that the value of throughput 
(D) is the same (thus the value for D need not be specified). The 
number of months of service (m) and the annual throughput from the 
battery (xi) are anticipated to be different for PVTN and PVTU. For 
example, one may find that PVTN is optimized when a new battery is 
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operated at a high annual throughput (implying a high DOD) over 10 
years, while a used battery may be required to operate at a lower 
annual throughput (restricted by available energy) and may only be 
capable of sustaining such operation for five years.

(2)

A simplified peak-shaving duty cycle consisting of a constant-power, 
two-hour discharge in the afternoon and a six-hour, constant-power, 
constant-voltage charge overnight performed 252 days per year was 
assumed to compute PVTN. This is a reasonable duty cycle for a 
battery performing in a generic peak-shaving role, which is a 
reasonable expectation for a second use battery. An average 
temperature of 10°C above the U.S. national average ambient 
temperature of 11.16°C was assumed [26] to conservatively represent 
the combined effects of the battery container, heat generation during 
discharge, and solar irradiation if the battery is located outside. This 
effective temperature may also be representative of locating the 
battery inside a climate-controlled facility with moderate cooling. We 
select a maximum SOC of 100%.

These conditions were simulated for DODs of 40%, 50%, 60%, and 
70%, and PVTN was computed for each based on the resultant service 
life (m) to select a near optimal DOD. End of service life was defined 
as the point at which the battery could not sustain the defined duty 
cycle at or above the minimum allowed cell voltage and 0% SOC. 
Data for the BEV75 cells are shown in Figure 6, where PVTN has 
been normalized to the best performer in this set. The use of a 50% 
DOD, yielding a 16.9-year lifetime, maximizes PVTN. Simulation of 
the lower-resistance PHEV20 cell yielded similar results (not shown), 
but the battery lasts slightly longer (17.2 years at 50% DOD). Thus, a 
50% DOD for each cell is employed as the optimal condition for the 
purpose of PVTN.

Figure 6. Lifetime and PVTN for a new BEV75 battery operated at various 
DOD for a simplified peak-shaving duty cycle

Using the resultant lifetimes for the BEV75 and PHEV20 cells at 
50% DOD, we can derive an equation for PVTN as a function of D 
and beginning of life (BOL) capacity, QBOL in Equations 3 and 4, 
assuming 30.4 days per month:

(3)

(4)

Next, batteries removed from automotive service were simulated to a 
similar peak-shaving cycle employed for PVTN to calculate the 
sustainable second use service life. DOD selection in second use was 
limited by two factors. First, large DODs were limited by capacity 
lost in automotive service. For example, a battery that has already 
lost 30% of its initial capacity cannot cycle at greater than a 70% 
DOD, as DOD is referenced to BOL battery capacity. Further, if this 
battery were cycled at 70% DOD, it would only be able to deliver this 
full cycle once as the battery continues to age. Second, it is 
unreasonable to employ excessively low DODs that result in 
extremely long battery lifetimes-these batteries will already have 
served 15 years in an automobile, and they are unlikely to have been 
designed to substantially exceed the vehicle's lifetime. Therefore, 
other mechanisms not accounted for in the battery degradation model 
(e.g., corrosion, failure of cell seals, fatigue of electrical connections, 
long-term electrochemical effects not yet witnessed in the underlying 
data) may become the primary pack failure mode if the second use 
lifetime becomes too large. For these reasons, investigations herein 
are limited to 50% and 60% DOD scenarios and a maximum 10-year 
second-use battery life.

After simulating the second use lifetime data, kH was calculated. 
Because the duty cycle is the same as that employed for computing 
the reference PVTN, Equations 1, 2, 3, 4 can be combined and 
simplified to Equations 5, 6, 7, 8.After simulating the second use 
lifetime data, we now turn to calculating kH. Because our duty cycle 
is the same as that employed for computing our reference PVTN, we 
can combine and simplify Equations 1, 2, 3, 4 to yield Equations 5, 6, 
7, 8.

(5)

(6)

(7)

(8)
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The results of the second use lifetime simulations and health factor 
calculations for both vehicles and DODs are presented in Figures 7, 
8, 9, 10. Median second use lifetimes and health factors across first 
use drive cycles are tabulated in Table 3. As with the automotive 
simulation results, the differences in predicted second use lifetimes 
and health factors between the batteries removed from service in Los 
Angeles and Phoenix were much smaller than the differences 
between the Los Angeles and Minneapolis batteries. Batteries from 
the PHEV20s were found to have considerably worse second use 
performance than those removed from BEV75s due to a combination 
of higher resistance growth and cycling-based capacity fade from 
automotive service. However, where the 10-year maximum B2U 
lifetime restriction comes into play (which occurs quite frequently for 
the 50% DOD cases), the impact of first-use climate is greatly 
reduced as most batteries are predicted to exceed the 10-year limit. 
Finally, the seemingly small difference in second use DOD (50% vs. 
60%) was observed to have a large effect on second use lifetime and 
health factor: where the 50% DOD lifetime does not exceed our 
10-year simulation limit, the lifetime and health factor of the 60% 
DOD case is approximately doubled.

Figure 7. Predicted second use service life and health factor, 50% DOD, 
BEV75; many cases reached the 10-year simulation limit

Figure 8. Predicted second use service life and health factor, 60% DOD, 
BEV75; no cases reached the 10-year simulation limit

Figure 9. Predicted second use service life and health factor, 50% DOD, 
PHEV20; many Minneapolis cases reached the 10-year simulation limit; few 
Los Angeles and Phoenix cases reached the 10-year simulation limit

Figure 10. Predicted second use service life and health factor, 60% DOD, 
PHEV20; no cases reached the 10-year simulation limit

Weighting the results from these vehicle platforms and climates to 
represent the second use performance of all PEV batteries from 
across the United States is challenging. Doing this properly entails 
not only forecasting the distribution for PEV deployments, but also 
forecasting the changing climate, which is beyond the scope of this 
study. Thus, on the simple basis that PEVs will be most successful in 
moderate climates, the predicted second use lifetimes and health 
factors from Los Angeles were employed for further evaluation. Both 
the 50% and 60% DOD cases will be retained for further study due to 
the significant differences in lifetime and value that result.

Table 3. Median Second Use Lifetimes and Health Factors for BEV75 and 
PHEV20

Identifying Remaining Battery Performance
While we previously discussed the topic of predicting remaining 
battery performance for the purpose of our forward-looking analyses, 
the repurposer will need to identify the remaining battery 
performance for each battery they consider for purchase. The first 
question that arises is which SOH parameter is most important to 
identify. To answer this question, we present the predicted second use 
battery lifetimes for our previous simulations as a function of the 
battery SOH parameters at the end of automotive service in Figure 
11. The lack of correlation between second use lifetime and R1, R2, 
and Q2 stands in stark contrast to the extremely consistent and linear 
correlation between second use lifetime and Q1-capacity fade due 
primarily to calendar effects. We see the same correlation between 
second use lifetime and total capacity fade, as all of our automotive 
simulations resulted in dominant Q1 fade.
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Figure 11. Comparison of second use lifetime to battery degradation at end of 
automotive service

Thus, identifying Q1 appears to be crucially important to diagnosing 
the second use value of a retired automotive battery. This could be 
accomplished by three different means: (1) directly measuring battery 
capacity at the point of repurposing, (2) applying computational 
methods to duty cycles recorded near the end of a battery's 
automotive service life, or (3) by recording and reporting relevant 
metrics from automotive service that correlate strongly to Q1 
capacity fade. The first method is well known and requires no 
additional capabilities be added to the vehicle; however, it requires 
specialized testing equipment and a relatively long testing duration. 
Thus, it is viable for the repurposer to perform after a purchase has 
been made, but not before. The latter two are not well developed and 
do require some additional capabilities be added to the vehicle at 
BOL. These latter two methods are discussed briefly below.

In-Situ Analysis of Drive Cycles and Charge Events to 
Identify Q1 Capacity
As applied in this study, mathematical battery models can be used to 
predict the voltage, current, temperature, and SOC response of a 
battery to a specific duty cycle. However, this problem may also be 
inverted: knowledge of a battery's response to a duty cycle can be 
applied to create a model. While many of our battery models are 
created this way using purpose-designed duty cycles, it is also 
possible to build models using arbitrary duty cycles. Thus, if a 
sufficient set of battery response parameters were monitored and 
recorded on-board a vehicle, a model of that battery could be built 
from regular field use of the vehicle without the need for specialized 
equipment, visits to a service center, etc. Done properly, this model 
could extract the SOH parameters necessary to evaluate a battery for 
B2U. The data could be applied not only to second-use valuation, but 
also range estimation, vehicle-to-grid assessment, and other purposes 
throughout the battery's automotive life. It is likely that the benefits of 
these automotive life services-perhaps range estimation alone-are 
sufficient to motivate the inclusion of such technology by OEMs.

NREL has developed and applied such algorithms on a limited basis 
to BEVs operating in the field. Battery duty cycles harvested from 
large data sets of in-use operation provide time series histories of 
pack and cell-level current and voltage. These data are applied to a 
battery electrical model that considers zero-order equivalent circuit 
dynamics and a single-particle model of electrode concentration 
gradients (used to describe transient voltage relaxation). The modeled 
battery voltage is compared to the historical data, and a constrained 
non-linear optimization algorithm is used to minimize the root mean 
square of model error (usually achieving root mean square error 
values of tens of millivolts per cell). Error is minimized by updating 
model parameters such as pack capacity, bulk resistance, initial 
thermodynamic state of charge, and multiple diffusion coefficients. 
An example comparison of modeled and measured battery response 
is shown in Figure 12.

Figure 12. Comparison of second use lifetime to battery degradation at end of 
automotive service

Following optimization of the model over each individual drive 
cycle, estimated parameters used to describe pack available energy 
and power are reported through time and compared to controlled 
performance tests conducted by NREL engineers in the field as 
available.

Figure 13 shows an example of fitting battery capacity and resistance 
for individual cells in six different battery electric vehicles over an 
approximate 2.5-year period. Applying these methods at the cell level 
offers the ability to identify individual cells with anomalous capacity 
or resistance parameters in addition to quantifying total pack 
performance.

Figure 13. Example results of cell-level capacities and resistances calculated 
from field data from six BEVs
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To date, this procedure has been applied to a small number of vehicle 
histories to develop and validate the technique. While the results of 
these methods have been encouraging, there is considerable room for 
improvement. Beyond advancing model fidelity and fitting 
algorithms, inclusion of battery response to charging events is 
expected to be both the easiest and most valuable addition to these 
methods (due to onboard hardware and software limitations, charging 
events were not available to NREL researchers in the work noted in 
these examples). Such low-rate, constant-current duty cycles, often 
terminated at a relatively precise final SOC and with considerable 
resting periods thereafter, will greatly improve the accuracy of 
capacity identification in particular-the critical component for second 
use battery valuation. Modifications to the charge protocol such as 
occasional charge interruptions to assess resistance or open-circuit 
voltage could also be implemented by the battery management 
system to further increase accuracy of SOH assessments.

The simplicity and potential for high accuracy of diagnostic methods 
relying on in-situ drive cycle and charge event analysis, combined 
with their value for improving onboard range estimation, could likely 
make them ubiquitous in PEVs of the near future. As the data could 
be used to great effect to support accurate resale value of a PEV, it 
may also become readily available to the vehicle owner. Thus, it 
would also likely be available to the repurposer to support valuation 
of packs prior to purchasing them.

Use of Automotive Service Metrics to Identify Q1 Capacity
Comparison of simulated automotive service statistics to calculated 
Q1 capacity fade has uncovered an excellent correlation of lifetime 
average battery temperature to Q1 for the BEV75s (Figure 14; R2 = 
0.8686). For the PHEV20s, we find that this simple correlation 
between temperature and Q1 is significantly less compelling (R2 = 
0.5169); however, the weighted addition of lifetime average SOC to 
lifetime average battery temperature results in a notable improvement 
(Figure 15, R2 = 0.6910).

Figure 14. Correlation of Q1 capacity fade to average battery temperature for 
BEV75s

Figure 15. Correlation of Q1 capacity fade to average battery temperature and 
SOC for PHEV20s

Modern PEV batteries are equipped with the ability to record battery 
temperature and SOC. Compiling a lifetime average SOC would 
require minimal additions to on-board software if the vehicles do not 
already record and calculate such a metric. Compiling a lifetime 
average temperature metric, on the other hand, may require minor 
hardware additions. Temperature while parked is a large component 
of lifetime average temperature. While a battery's large thermal mass 
results in slow movement of battery temperatures and low required 
data logging rates, it is still necessary for the vehicle to “wake up” 
briefly and periodically during park events to measure and log new 
battery temperature data points.

The experience of the authors to date suggests that many PEVs do not 
record battery temperature data when the vehicle is in a key-off state 
and is not connected to a charger. Thus, software and possibly 
hardware changes would be required to implement these features. 
However, doing so would add a strong indicator of battery health and 
could be combined with the in-situ inverse modeling efforts described 
in the previous section for even more accurate estimates of battery 
SOH (possibly decoupling Q1, Q2, R1, and R2). As such, this feature 
too may be commonly included in PEVs in the coming years.

Recommended Identification Strategies
Taken together, the in-situ analysis of drive cycles and charging 
events along with recording of lifetime battery temperature and SOC 
metrics could provide an extremely high-confidence diagnostic for 
battery SOH. It may even prove capable of decoupling different wear 
mechanisms, such as the R1, R2, Q1, and Q2 terms employed herein. 
Combined with additional on-board vehicle data of cell-level metrics 
to identify cell-to-cell variability (e.g., identifying faulty individual 
cells), and prognostic methods to predict future SOH trends (e.g., a 
battery life model), repurposers could make low risk purchasing 
decisions that maximize yield and minimize required in-house 
testing. Given the minimal cost anticipated to add these capabilities 
to the vehicles and to share the data with repurposers, this path is 
strongly recommended. However, given the long design cycle of new 
PEVs and the possibility that vehicle OEMs might not be willing to 
share such data, there may be a number of retired automotive 
batteries available without such information. Here, repurposing yields 
will certainly fall, and increased in-house testing will be required. 
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Thus, the effects of both cases (with and without advanced vehicle 
data) were analyzed in an attempt to quantify the value of adding 
these capabilities to PEVs.

CONCLUSIONS
Herein we have presented a general methodology and tools for 
computing battery degradation during automotive and secondary use 
and translating battery wear to ascertain its effect on value. Under our 
assumed second use duty cycle of daily peak shaving, we have found 
that repurposed automotive batteries can last ten years or more in 
second use service when managed properly. In this role, capacity fade 
from automotive use has a much larger impact on second use value 
than resistance growth. Where capacity loss is driven by calendar 
effects more than cycling effects, average battery temperature during 
automotive service, which is often driven by climate, is found to be 
the single factor with the largest effect on the remaining value. 
Installing hardware and software capabilities onboard the vehicle that 
can both estimate remaining battery capacity from in-situ 
measurements, as well as track average battery temperature over 
time, will thereby help facilitate the second use of automotive 
batteries.
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DEFINITIONS/ABBREVIATIONS
°C - degrees Celsius

B2U - Battery Second Use

BEV - battery electric vehicle

BEV75 - battery electric vehicle with a 75-mile range

BLAST - Battery Lifetime Analysis and Simulation Tool

BLAST-V - Battery Lifetime Analysis and Simulation Tool for 
Vehicles

BOL - beginning of life

DOD - depth of discharge

NREL - National Renewable Energy Laboratory

OEM - original equipment manufacturer

PEV - plug-in electric vehicle

PHEV - plug-in hybrid electric vehicle

PHEV20 - plug-in hybrid electric vehicle with a 20 mile range

PVT - present value of throughput

Q1 - capacity loss due to calendar effects

Q2 - capacity loss due to cycling effect

R1 - resistance growth due to calendar effects

R2 - resistance growth due to cycling effects

SOC - state of charge

SOH - state of health
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