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Models for Battery Reliability and Lifetime 

Kandler Smith, Eric Wood, Shriram Santhanagopalan, Gi-Heon Kim, Jeremy Neubauer, Ahmad Pesaran 
National Renewable Energy Laboratory 

Abstract 

Models describing battery degradation physics are needed to more accurately understand how battery usage 
and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also 
reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for 
chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial 
iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced 
degradation mechanisms. 

Introduction 

Lifetime predictive models are needed to better understand design and operational consequences on 
performance degradation of Li-ion batteries (LIB). Calendar-life models describing LIB degradation have shown 
reasonable promise in predicting rate transport and reactions leading to lithium (Li) loss and can be closely matched 
to data (Ploehn, 2004; Safari, 2011). Detailed elementary chemical reaction models (Christensen, 2004; Colclasure, 
2010) provide a framework for studying degradation reactions for different chemical systems. Cycle-life models of 
LIBs, however, have yet to offer a method to predict capacity fade for a wide range of cycling and environmental 
conditions. Coulombic-throughput or energy-throughput are sometimes used as proxies to describe mechanical 
stress-induced fade and are regressed to experimental capacity data (Peterson, 2010). These models are difficult to 
extend to a wide range of cycling conditions (Wang, 2010). 

Mechanical stress has gained increasing attention in LIB modeling literature with one motivator being to 
create physical models of capacity fade that can help guide cell design. Mechanical stress effects have been modeled 
at length scales ranging from particle-level (Christensen, 2006) to electrode sandwich level (Renganathan, 2010; 
Xiao, 2010), cell level (Sahraei, 2012) and pack level (Sahari, 2010). Particle stress investigations have shown, for 
example, possible failure during fast-rate charging where intercalation-rate of Li into a negative electrode active 
particle drives a faster rate of expansion at the outer radii of the particle, generating high-tensile stress in the inner 
core that may lead to fracture. During de-intercalation, high-tensile stress occurs at the outside of the particle. 
Models predict theoretical stress levels below which no failure should occur, albeit for simplified electrode 
geometries without pre-existing flaws. 

While these stress models already provide useful directional input to the design phase, further extensions 
are needed to predict capacity fade. Particle fracture models must be extended beyond crack initiation to describe 
crack propagation on a time scale relevant for life prediction. Computational models have not yet captured realistic 
geometries including dispersed flaws consequent of the manufacturing process. Fracture leading to apparent active-
site isolation has been studied; however, additional factors that may lead to active-site isolation—such as binder 
failure coupled with differential expansion of various cell components—have not been studied as they relate to 
cycling fade rate. Cell and pack level models have mostly considered the impact of crush on various cell and pack 
geometries.  

In this paper, we hypothesize a fatigue model to describe mechanical-stress-induced capacity fade. The 
model is regressed to capacity fade data from the literature for a commercial iron-phosphate cell. Based on the 
model, the relative importance of various mechanical-induced degradation mechanisms on cycle life is discussed.  

Degradation Mechanism Hypotheses 

Some important mechanical stress considerations leading to cell performance fade are illustrated in Figure 1. 
These are: 

(i) Particle and electrode isolation caused by high-concentration, gradient-driven strains leading to 
fracture; rate is likely accelerated by high intercalation C-rates and low temperatures cycling 
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(ii) Particle and electrode isolation caused by loss of adhesive/cohesive properties leading to debonding of 
particles from one another, or delamination of active materials from current collectors; degradation rate 
acceleration factors likely include: 
a. High temperature leading to binder breakdown 
b. Depth-of-discharge (DOD) swings causing bulk strain of active materials  
c. Temperature swings during cycling and cool-down (∆T) leading to differential strain amongst 

various cell components 
(iii) External pressure and forcing conditions on the cell packaging transmitted to the jelly-roll; pressure 

supplied by a module housing, for example, can impact the cycle life of pouch cells.  

For the present cylindrical cell tested in a laboratory environment, impact of external pressure and forcing can 
be neglected. 

 

Fig. 1  Mechanical stress effects contributing to damage and performance fade 
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Mathematical Model 

Estimation of relative effects of mechanical stress on capacity fade under different aging conditions is 
performed using a sequence of local model regression, degradation-rate visualization/hypothesis of rate functional 
form, and rate-law model regression. Local models and hypothesized rate laws are described below. 

Local models 

Local models describe capacity fade with time t and electro-thermo-mechanical cycles N for a single fixed 
aging condition. In the present model, relative capacity, q (available capacity at a given state-of-life divided by 
beginning-of-life capacity), is interpreted as 

).,min( sitesLi qqq =  [1] 

where qLi is capacity limited by cycleable-Li in the cell, 

Nbtbbq z
Li 210 ++= , [2] 

and qsites is capacity limited by active-sites. Provided the cell is not stored in an over-discharged or over-charged 
state, we find qsites predominantly correlates with number of cycles rather than time, 

Nccqsites 20 += . [3] 

Equations [1-3] reproduce several common features observed in capacity fade data:  

(i) Graceful fade regime observed for cells aged under pure storage conditions (b1tz) or in low-to-
moderate cycling conditions (b2N) in [2] 

(ii) Linear fade regime (c2N) in [3] either observed  
a. immediately starting at BOL when a cell is repeatedly cycled at moderate-to-high stress levels 

such as during an accelerated cycling test, or if not then 
b. nearing EOL when an initial graceful fade region experiences a sudden knee where apparent 

capacity degradation suddenly accelerates. 

The min function in Eq. [1] has several consequences for interpreting capacity fade data. First, multiple 
shapes of capacity versus age are possible. Second, depending on the chosen aging condition and extent of aging, 
degradation rates b1, b2, and c2 may not all be observable from total capacity measurements for a single aging 
condition. To investigate mechanical stress degradation, the present paper only considers regression of a rate model 
for c2 to data for the commercial graphite/iron-phosphate cell. Regression of parameters b1 and b2 will be described 
in a future publication. 

Rate model 

Tracking damage as a function of cycles N is common in fatigue literature. The fatigue approach used in 
the present work is practical when a mechanical-stress/life-predictive model must retain close relationship with 
supporting experimental data. Thermo-mechanical fatigue literature suggests formulas to combine effects of 
multiple simultaneous degradation mechanisms occurring in parallel. For gas turbine engines for example, the 
number of cycles to end-of-life (EOL) is expressed as harmonic mean of cycle-life for separate mechanisms  

.1111 oxidationcreepcrackEOL NNNN ++=   [4] 

In [4], crack propagation is due to pure mechanical loading, creep is the flow of materials induced when mechanical 
cycles are superimposed with thermal cycles, and oxidation is material change due to accumulated exposure at high 
temperatures. 
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For a battery, one might hypothesize a similar model where life is limited by bulk DOD cycles, thermal cycles, and 
fracture driven by species concentration gradients 

.1111 fractureTDODEOL NNNN ++= ∆  [5] 

Rationalizing this model with [3] implies that degradation rates, expressed as capacity fade per cycle, of the various 
mechanisms are additive 

.,2,2,22 fractureTDOD cccc ++= ∆    [6] 

The fatigue model must express the functional dependence of degradation rate on operating parameters, c2 
(DOD,∆T,T,Crate,tpulse). Consistent with the degradation mechanism hypotheses discussed above, we expect fracture 
degradation in [6] to be accelerated by sluggish intercalation at low temperatures (Safari, 2011), and high C-rates 
together with long (dis)charge times (Zhao, 2010). We propose a non-dimensional acceleration factor θ for 
intercalation-induced fracture, 

( )( )( ) .exp
,,

intercal.
11

Rintercal. 




−= −

refpulse

pulse

refrate

rate

ref

a
t

t
C
C

TT
Eθ  [7] 

Binder breakdown is likely to lead to electrode site isolation, particularly for high temperature cycling. The 
capacity fade impact of binder failure is likely convoluted with occurrence of differential strain of particles, 
electrodes, and other cell components. A proposed capacity fade rate model describing binder degradation, 
differential expansion of cell components, and particle fracture effects is 

( )( )[ ]{ }.exp intercal.
4

intercal.
321

11
,22

binder

θθ mmTmDODmcc
ref

a
TTR

E
ref ++∆+−= −  [8] 

Several considerations are noted for regression of this rate model. As written, [8] is over-determined. 
Parameter m1 is removed from the parameter search, given the constraint m1+m2+m3+m4=1. Next, it is difficult to 
regress two conflicting activation energies simultaneously. In [8], Ea

binder > 0 describes high temperature 
acceleration and Ea

intercal. < 0 describes low temperature acceleration. We fix activation energy for intercalation-
induced fracture to Ea

intercal. = 43321 J/mol representing transport limitations in the graphite electrode (Safari, 2011) 
as studies have shown that particle damage is negligible for the iron-phosphate electrode with nano-sized particles.  

The following section describes regression of parameters p = [c2,ref, m2, m3, m4, Ea
binder] in [8] and 

interpretation of mechanical stress-induced capacity fade created by this hypothesized model.  

Data Regression Analysis 

We compiled capacity fade data from multiple sources including Delacourt et al. (Safari 2011); HRL Labs 
consortium (Wang, 2010); and NASA Jet Propulsion Laboratory (Smart 2008). The total set of data encompasses 50 
different aging conditions for a 2.2 Ah A123 26650 cell with graphite/iron phosphate chemistry. 

In this work, we restrict our analysis to the knee regime of the capacity fade curves. Figure 2 shows the 
subset of aging data within the apparent knee regime. Each tested condition is labeled according to the test 
laboratory, cycling profile and temperature, in the format “Lab, DOD, C-rate,dis/C-rate,chg, test chamber 
temperature.” The knee regime is identified mathematically using thresholds for first and second derivatives of 
relative capacity, dq/dt < 0 and d2q/dt2 < ε where ε is a small negative number. 
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Fig. 2  Aging data for 2.2 Ah graphite/iron-phosphate cell; entire dataset (green dotted lines); subset of data in 
knee regime (black solid lines) 

Local model regression 

A value of parameter p = [c2] in [3] is regressed to fit the knee region in each of the 13 datasets, creating 13 
rate values that can be visualized for dependence on temperature and cycling condition. In [3] we assume c0 = 1 
which, for the present cell, is supported by the data. Local model fits to capacity fade trajectories are shown in 
Figure 3. The combined models capture the knee-region of capacity fade with 1.37% root-mean-square error 
(RMSE).  . The rate of capacity fade, c2, for each aging condition is shown in Figure 4 versus the inverse of 
temperature. Confidence intervals are narrow in most cases. High C-rate cycling at 0oC is not estimated as well. This 
could be partly attributable to error in the thermal model we employed to estimate T(t) for each aging condition, 
together with the assumption that associated duty-cycle stress variables T and ∆T stay constant throughout life. 
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Fig. 3  Local model [3] fit to 13 separate data sets; data (·), model (-), 95% confidence intervals (--) 

 

Fig. 4  Capacity fade rate determined by local model fits [3] for 13 tested aging conditions; error bars are 95% 
confidence intervals for parameter c2 (they relate to confidence intervals in Fig 3) 
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Fig. 5  Capacity fade rate; rates from local models (blue “o”) and global rate-law model [7-8] (purple “x”, 
together with confidence intervals of global model) 

Rate model regression 

Although not shown here, the proposed global rate-law model [7-8] cannot represent the NASA-JPL 
2C/2C, -20oC test condition well with reasonable parameter values. It is possible that this cell’s steep fade trajectory 
is controlled by Li plating rather than active site loss. Li plating is a likely side reaction to occur at low temperatures 
and high charge C-rates, such as for this test condition. We do not include this test condition when fitting the global 
rate-law model. Also not discussed further, over the course of our investigation we compared numerous alternate 
model forms to that described here. This paper only describes the most plausible model [7-8].  

Simultaneous regression of parameters p = [c2,ref, m2, m3, m4, Ea
binder] is challenging for traditional non-

linear regression tools, such as the Levenberg-Marquardt algorithm used here. Though sub-optimal, by separately 
fitting different regions of the data (e.g., low C-rates and limited temperature ranges) we find Ea

binder has a value of 
around 36,000 to 53,000 J/mol. A typical median value that represents the entire dataset well is 49000 J/mol. 
Parameters m2, m3, and m4 are determined by direct search, stepping through the parameter space between 0 and 1 
for each mi while regressing c2,ref, sometimes in combination with other parameters. The best model fit identified 
uses m1 = 0.83, m2 = 0.04, m3 = 0, m4 = 0.13 with quality of fit R2 = 0.96. 

Figure 5 compares the global rate-law prediction with rates estimated from regression of local models. 
While the data may be less than optimally fit—a subject of future effort—the hypothesized model and parameters 
offer interesting physical interpretation. Reference conditions used in [7-8] are Tref= 23oC, Crate,ref = 1C, DODref = 
100%. The parameters mi  thus imply that, under typical cycling conditions of 100% DOD, 1C charge and discharge 
at room temperature: 

• 83% of active site loss is attributed to bulk volumetric expansion/contraction of the active material 
• 4% of active site loss is attributed to temperature swings encountered by the cell 
• 13% of active site loss is attributed to particle fracture owing to intercalation stress at high C-rates. 

These ratios will change depending on temperature and cycling condition. 



8 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Conclusions 

While conclusions are tentative pending validation with further data, the hypothesized fatigue model and 
analysis of graphite/iron-phosphate aging data suggests that some 83% of mechanical-induced active-site loss is 
attributable to bulk DOD swings during cycling. As the iron-phosphate electrode is made with mechanically stable 
nano-sized particles, we attribute the expansion/contraction-driven site loss to the graphite electrode with micron-
sized particles. The present model partially supports the use of Amp-hour throughput as a proxy for modeling 
capacity fade due to site loss, since the product of DOD with number of cycles N relates directly to Amp-hour 
throughput. This work extends Amp-hour throughput models to include the effects of C-rate, temperature, and—also 
importantly—calendar fade. 

While DOD swings apparently cause the most damage, we estimate that C-rate-driven particle fracture 
contributes on the order of 13% to active site loss. The model and data further estimate that temperature swings, 
causing differential thermal expansion of cell components, contributes weakly on the order of 4% to active site loss. 
The presented fatigue model, while simple, provides a relatively robust description of the 2.2 Ah cylindrical 
graphite/iron-phosphate cell life data. It will be applied in future work within a more sophisticated multi-
dimensional physical degradation model framework. 

Acknowledgements 

The authors gratefully acknowledge funding by U.S. Department of Energy Office of Vehicle Technologies 
- Energy Storage, program managers David Howell and Brian Cunningham, and U.S. Army Tank Automotive 
Research, Development and Engineering Center, program manager Yi Ding. 

References 

1. J. Christensen, J. Newman, “A mathematical model for the lithium-ion negative electrode solid electrolyte 
interphase,” J. Echem. Soc. (2004) 151 (11) A1977-1988 

2. H.J. Ploehn, R. Premanand, R.E.White, “Solvent diffusion model for aging of lithium-ion battery cells,” J. Echem. 
Soc. (2004) 151 (3) A456-A462 

3. M. Safari, C. Delacourt, “Simulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell,” 
J. Echem. Soc. (2011) 158 (12) A1436-1447 

4. S.B. Peterson, J. Apt, J.F. Whitacre, “Lithium-ion battery cell degradation resulting from realistic vehicle and 
vehicle-to-grid utilization,”  J. Power Sources (2010) 195, 2385-2393 

5. J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, 
“Cycle-life model for graphite-LiFePO4 cells,” J. Power Sources (2011) 196, 3942-3948 

6. M. Safari, C. Delacourt, “Mathematical modeling of lithium iron phosphate electrode: Galvanostatic 
charge/discharge path dependence,” J. Echem. Soc. (2011) 158 (2) A63-73 

7. J. Christensen, J. Newman, “A mathematical model of stress generation and fracture in lithium manganese oxide,” 
J. Echem. Soc. (2006) 153 (6) A1019-1030 

8. S. Renganathan, G. Sikha, S. Santhanagopalan, R.E. White, “Theoretical analysis of stresses in a lithium ion cell,” 
J. Echem. Soc. (2010) 157 (2) A155-163 

9. X. Xiao, W. Wu, X. Huang, “A multi-scale approach for the stress analysis of polymeric separators in a lithium-
ion battery,” J. Power Sources (2010) 195, 7649-7660 

10. E. Sahraei, R. Hill, T. Wierzbicki, “Calibration and finite element simulation of pouch lithium-ion batteries for 
mechanical integrity,” J. Power Sources, (2012) 201, 307-321 

11. E. Sahraei, R. Hill, T. Wierzbicki, “Modeling and short circuit detection of 18650 Li-ion cells under mechanical 
abuse conditions,” J. Power Sources, (2012) 201, 307-321 

12. E. Sahraei, R. Hill, T. Wierzbicki)Modeling of lithium-ion batteries for crash safety,” Global Powertrain 
Congress, Troy, Michigan, Nov. 4, 2010. 

13. K. Zhao, M. Pharr, J.J. Vlassak, Z. Suo, “Fracture of electrodes in lithium-ion batteries caused by fast-charging,” 
J. Appl. Phys (2010) 108, 073517 

14. M.C. Smart, R.V. Bugga, L. Whitcanack, A.S. Gozdz, S. Mani, “Improved low temperature performance of high 
rate nano-lithium iron phosphate-based Li-ion cells with advanced electrolytes,” 214th Echem. Soc. Mtg., 
Honolulu, Hawaii, October 15, 2008 


