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Accounting for the Variation of Driver Aggression in the Simulation of 
Conventional and Advanced Vehicles 

Jeremy Neubauer and Eric Wood 
National Renewable Energy Laboratory 

 

ABSTRACT 

Hybrid electric vehicles, plug-in hybrid electric vehicles, and 
battery electric vehicles offer the potential to reduce both oil 
imports and greenhouse gases, as well as to offer a financial 
benefit to the driver. However, assessing these potential 
benefits is complicated by several factors, including the 
driving habits of the operator. We focus on driver aggression, 
i.e., the level of acceleration and velocity characteristic of 
travel, to (1) assess its variation within large, real-world drive 
datasets, (2) quantify its effect on both vehicle efficiency and 
economics for multiple vehicle types, (3) compare these 
results to those of standard drive cycles commonly used in the 
industry, and (4) create a representative drive cycle for future 
analyses where standard drive cycles are lacking. 

INTRODUCTION 

Hybrid electric vehicles (HEVs), plug-in hybrid electric 
vehicles (PHEVs), and battery electric vehicles (BEVs) offer 
the potential to reduce both oil imports and greenhouse gases, 
as well as to offer a financial benefit to the driver. However, 
assessing these potential benefits is complicated by several 
factors, including the local climate, the cleanliness of the grid 
supplying electricity (for PHEVs and BEVs), and the driving 
habits of the operator, among many other things. Driving 
habits can be divided into two topics for consideration: (1) trip 
patterns, i.e., the distribution of trip times and distances, and 
(2) aggression, i.e., the level of acceleration and the velocity 
characteristics of travel. Investigation of trip patterns in [1] 
and [2] found that the variation in the distribution of daily 
miles traveled observed in real-world, multi-day drive data [3] 
produces significant variation in gasoline savings and total 
cost of ownership.  

Herein, we focus on driver aggression to (1) assess its 
variation within large, real-world drive datasets, (2) quantify 
its effect on both vehicle efficiency and economics for 
multiple vehicle types, (3) compare these results to those of 
standard drive cycles commonly used in the industry, and (4) 
create a representative drive cycle for future analyses where 
standard drive cycles are lacking. By doing so, we aim to 
supply an approach for vehicle performance simulation and 
testing that accurately captures the variation between different 
drivers, in particular for high-level techno-economic analyses 
performed using the National Renewable Energy Laboratory’s 

(NREL’s) Battery Ownership Model. This work is supported 
by the U.S. Department of Energy’s Vehicle Technologies 
Program. 

ANALYSIS 

In this study, we apply a high-resolution vehicle simulator to 
real-world drive data to calculate a distribution of vehicle 
efficiencies for multiple vehicle types and operational modes. 
We then analyze these distributions and compare them to 
standard drive cycles commonly employed in the industry. 
From there, we synthesize and validate an artificial drive cycle 
that characterizes the average of the complete set of real-world 
drive data. We also describe in detail a set of associated 
scaling factors valid for computing the observed variation in 
vehicle efficiency.  

Real-World Drive Data 

Real-world, high-accuracy, and high-resolution vehicular 
velocity histories are needed to predict the actual on-road 
variation in vehicle efficiencies of different driver and 
powertrain combinations. For this purpose, 2,154 unique 
vehicle records (spanning 1–2 days each) were sourced from 
the NREL Secure Transportation Data Center: a composite of 
data from Los Angeles, CA; Austin, TX; San Antonio, TX; 
and Houston, TX travel studies [4]. The data were recorded 
using on-board global positioning system data acquisition 
systems filtered down to second-by-second acceleration and 
velocity histories per the methods described in [5]. 

The box charts in Figures 1–3 show a statistical summary of 
this composite vehicle record data set broken out by city for 
vehicular speed, acceleration, and kinetic intensity [6]. Note 
that both speed and acceleration are averaged over time for 
each individual vehicle record. For reference, these same 
statistics are included for four industry-standard drive cycles: 
(1) Highway Fuel Economy Driving Schedule (HWFET), (2) 
Urban Dynamometer Driving Schedule (UDDS), (3) Air 
Resources Board Dynamometer Driving Schedule (LA92), 
and (4) Supplemental Federal Test Procedure (US06). The 
median, 25th percentile, and 75th percentile values for speed 
and kinetic intensity are fairly consistent among all four cities. 
Acceleration statistics are visibly larger for Los Angeles, but 
they are consistent for the three Texas cities. 
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Vehicle Simulation 

Vehicle simulation is conducted to achieve two goals: (1) to 
generate powertrain specifications for models of comparable 
conventional vehicles (CVs), HEVs, PHEVs, and BEVs; and 
(2) to simulate the fuel consumption of these different 
powertrains when subjected to the driving requirements of 
real-world operators (as defined by the real-world drive data 
discussed previously).  

For both tasks, we employ the NREL-developed ADVISOR 
vehicle simulator to calculate the energy consumption of 
different powertrains under both industry-standard and real-
world drive cycles [7]. Operating in the MATLAB/Simulink 
environment, ADVISOR employs a hybrid backward/forward-
facing approach to evaluate system interactions and 
performance relative to individual component limitations.  

To calculate the powertrain specifications of comparable CVs, 
HEVs, PHEVs, and BEVs, we simulate each architecture 
iteratively with different combustion engines, electric motors, 
and battery sizes until a 0–60 mph acceleration time of 9 
seconds and a 40- or 75-mile all-electric range (AER) for the 
PHEV and BEV, respectively, are achieved simultaneously. 
Note that the range is determined via the usable energy of the 
battery and the calculated vehicle efficiency of the UDDS and 
HWFET cycles combined and adjusted in a manner 
representative of the two-cycle approximation to the U.S. 
Environmental Protection Agency’s combined city and 
highway window-sticker rating per [8]. A midsize sedan with 
a coefficient of drag of 0.3 and a frontal area of 2.27 m2 is 
assumed in all cases, as is a 136 kg cargo mass. The HEV and 
PHEV are modeled with a parallel engine/motor 
configuration, and are held to a 40% degree of hybridization. 
The HEV battery was sized to approximate existing 
commercial HEVs [9]. Additional inputs and results are 
presented in Table 1. 

Subsequently, we apply these models to calculate the vehicle 
efficiency of each powertrain for four industry-standard drive 
cycles (HWFET, UDDS, LA92, and US06), as well as each of 
the processed real-world drive days discussed above. For 
vehicle record simulations, we lock the PHEV in charge 
depleting (CD) and charge sustaining (CS) modes separately; 
in doing so, we ignore the AER limitations of the PHEV and 
allow it to operate in CD mode indefinitely.  

 
Figure 1. Speed statistics for four real-world drive data sets 

 
Figure 2. Acceleration statistics for four real-world drive 

data sets 

 
Figure 3. Kinetic intensity statistics for four real-world drive 

data sets 
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We approach the BEV the same by ignoring AER limitations. 
This approach is used so that the entire vehicle record may be 
simulated regardless of distance travelled. We further assume 
that initial engine coolant is at operational temperature at the 
beginning of each trip. We recognize that such assumptions 
are not realistic of actual vehicle use, but they are important to 
ensure the impact of local climate and that the timing of trips 
may be separated from kinetic intensity. The effect of AER, 
climate, and cold starts will be addressed in a future 
publication as the appropriate level of consideration of multi-
day driving patterns, thermal effects, and battery/engine 
control strategy is beyond the scope of this paper. The effects 
of grade, wind, and cornering are also neglected. 

It is worth noting that the driving data employed herein were 
collected from an array of vehicle makes, models, years, and 
body styles from the existing local fleet of personal-use 
vehicles. The authors acknowledge that some drive data 
evaluated herein were likely collected from vehicles with 
greater performance capabilities than the employed models 
(namely maximum acceleration, where our simulated vehicles 
are capable of a 9-second 0–60-mph sprint). Accordingly, we 
checked all simulated trips to evaluate the occurrence of speed 
trace errors where our simulated vehicle was incapable of 
matching the original recorded speed history. We found that of 
the 13,622 real-world trips simulated across five powertrains, 
95.9% of all trips exhibited a maximum error of less than 1 
mph, while 99.5% achieved a maximum error of less than 5 
mph. As the occurrence of speed trace error is small, we 
conclude that the discrepancies between the performance 
capability of our simulated vehicle and that of the vehicles 
behind the data will have a negligible impact on our results. 
Thus, we do not down-select vehicle records for analysis 
based on performance criteria.  

Effect of Driver and Vehicle 

Variation of vehicle efficiency across individual vehicle 
records by powertrain (and operational mode, for the PHEV) 
is presented in Figure 4. Values on the y-axis have been 
nondimensionalized relative to the average vehicle efficiency 
for each case, such that values less than one indicate superior 

efficiency relative to the mean and vice-versa. PHEV 
efficiency in CD mode is captured by converting any fuel use 
by the internal combustion engine (occurring in approximately 
half the data) to an equivalent amount of electrical energy, 
using the lower heating value for gasoline, and summing with 
electric motor energy consumption on a per-distance basis. 
Several important points become clearly evident from this 
graph. First, we see that the median vehicle efficiency from 
the data set is relatively close to the mean. Second, the 
distribution is asymmetric around the mean—variations in 
aggression have a significantly greater capability to increase 
fuel consumption from the mean than to decrease it. 

Finally, we find that the powertrain type has minimal 
influence on the distribution of vehicle efficiency as a function 
of population percentile. It is important to highlight, though, 
that this may not be true for different vehicle platforms (e.g., 
compact cars or large SUVs), those with different 0–60 mph 
acceleration targets, or hybrids of different architectures (e.g., 
serial hybrids). 

Comparison to Standard Drive Cycles 

Figures 5–9 compare the distribution of vehicle efficiency 
computed from real-world vehicle records to that calculated 
for four industry-standard drive cycles (HWFET, UDDS, 
LA92, and US06) for four vehicle types (CV, HEV, PHEV, 
and BEV). Two plots are shown for the PHEV, one for CS 
operation and one for CD, split for the reasons noted above.  

These plots show distinct differences between operational 
modes (combustion-only, hybrid operation, and electricity-
only) with respect to how the standard drive cycles compare to 
the distribution of vehicle record results. When operating only 
under the power of combustion (CV), we find that simulation 
of the HWFET cycle significantly underpredicts vehicle 
record fuel consumption calculations, whereas the UDDS is 
representative of the mean, and the US06 and LA92 cycles 
slightly overpredict average vehicle record fuel consumption. 

Table 1. Vehicle Specifications 

 
Powertrain CV HEV PHEV40 BEV75 
Accessory Load (W) 700 300 300 300 
Vehicle Mass (kg) 1,679 1,613 1,794 1,611 
Internal Combustion Engine 
Power (kW) 121 62 

69 n/a 

Electric Motor Power (kW) n/a 41 46 95 
Battery Total Energy (kWh) n/a 1.67 17.6 25.5 
Battery Maximum State of 
Charge n/a 80% 95% 95% 

Battery Minimum State of 
Charge n/a 60% 25% 5% 

Vehicle Efficiency 27.0 mpg 38.6 mpg 34.2 mpg (CS) 
308 Wh/mi (CD) 305 Wh/mi 
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Figure 4. Normalized vehicle efficiency vs. percentile of 
vehicle records for different powertrains 

 

Figure 5. Comparison of vehicle record and standard cycle 
CV efficiency 

 

Figure 6. Comparison of vehicle record and standard cycle 
HEV efficiency 

 

Figure 7. Comparison of vehicle record and standard cycle 
PHEV efficiency in charge sustaining mode 

 

Figure 8. Comparison of vehicle record and standard cycle 
PHEV efficiency in charge depleting mode 

 

Figure 9. Comparison of vehicle record and standard cycle 
BEV efficiency 
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For the CV, LA92 predicts the highest fuel consumption, but it 
is relatively close to that predicted by US06. When operating 
in hybrid mode (HEV, PHEV-CS), we find that the HWFET 
still predicts the lowest fuel consumption, but it is now within 
the tail end of the vehicle record data. The UDDS now slightly 
underestimates average vehicle record simulations, but it 
represents reasonably well the mode thereof. Further, the 
differences between UDDS, LA92, and US06 predictions are 
more exaggerated than in the combustion-only case, and US06 
becomes the least fuel-efficient standard drive cycle. These 
trends continue when advancing to all-electric mode (PHEV-
CD, BEV). The UDDS cycle falls further down in relative fuel 
consumption when compared to the mode value of vehicle 
record data, and the difference between UDDS, LA92, and 
US06 predictions increases even further. Here we find that the 
LA92 cycle is the best indicator of average vehicle record 
predictions among the four standard cycles we examined. 

It is important to note that this latter trend of increasing 
variation in efficiency predictions between standard drive 
cycles as the degree of electrification increases is not 
indicative of increasing sensitivity to real-world drivers. 
Recall that the results in the previous section showed that the 
variation in fuel efficiency across real-world drive data is 
fairly consistent across powertrains (see Figure 3). Rather, 
these data imply that the response of these powertrains to 
different drive cycles is varied and complex, as will be 
discussed below. 

Creating a Representative Drive Cycle 

A set of drive cycles representative of specific percentiles of 
the recorded real-world drive data is desired for future 
simulation. Doing so will greatly speed computational time by 
reducing the information of thousands of 24-hour or longer 
drive cycles to a single ~15-minute drive cycle that can be 
quickly simulated. However, the complex interplay of 
powertrain and drive cycle makes it impractical to create such 
a set, as discussed below. However, we do find it possible to 
design one drive cycle indicative of the average of all 
computed vehicle record efficiencies, which then allows the 
application of scaling factors from Figure 3 to estimate that of 
a specific population percentile. Herein, we apply the NREL-
developed DRIVE [10] software package to synthesize this 
single drive cycle. 

DRIVE employs a deterministic multivariate hierarchical 
clustering method to generate representative drive cycles from 
source data. It first concatenates our 2,154 vehicle records into 
a single “super” cycle, which is characterized for more than 
170 drive-cycle metrics. The tool then decomposes the cycle 
into its component microtrips, which are individually analyzed 
over the same set of operational metrics. This set of statistics 
includes well-known metrics such as average driving speed, 
stops per mile, and zero-speed time as a percentage of cycle 
operation. Other specialized metrics include kinetic intensity, 
aerodynamic speed, and characteristic acceleration, which are 
used to characterize energy consumption [6]. Afterwards, the 
individual microtrips are grouped into clusters and ranked 

based on a set of performance metrics. Upon ranking, the ideal 
microtrip from each cluster is selected and concatenated to 
form a representative cycle. This clustering process is iterated 
over the number of clusters chosen for the data as well as the 
performance metrics chosen for ranking. It is based on a 
maximum number of clusters, which is calculated as the 
product of the desired representative cycle duration, the 
number of stops per mile for the “super” cycle, and the 
average speed over the “super” cycle. As a final step in the 
generation of a representative drive cycle, zero-speed time is 
either added or removed from the final drive cycle output to 
match the percentage found in the original data “super” cycle. 

The resultant drive pattern is shown in Figure 10. It has an 
average speed of 30.5 mph, an average positive acceleration of 
0.960 mph/s, and a kinetic intensity of 0.577 mi-1. Simulation 
of this drive cycle in ADVISOR for all four powertrains 
shows a good agreement of average predicted vehicle 
efficiency when compared to that observed from the 
simulation of all 2,154 vehicles, as shown in Table 2. 
Accordingly, this drive cycle can be used to quickly compute 
average vehicle efficiency, which can then be expanded to 
represent different population percentile vehicle efficiencies 
using the correction factors of Table 3 (computed from the 
dataset used to prepare Figure 4). 

 

Figure 10. Representative drive cycle produced from 2,154 
vehicles using DRIVE 

Table 2. Comparison of Average Predicted Vehicle 
Efficiency Between Synthesized Drive Cycle and Vehicle 

Record Simulations 

Error of mean vehicle record and  
synthesized drive-cycle efficiency 

CV HEV PHEV40 
(CS) 

PHEV40 
(CD) 

BEV75 

-0.37% -0.70% 0.07% 0.23% -0.03% 
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Table 3. Scaling Factors 

Vehicle 
Day 

Percentile 
CV HEV PHEV40 

(CS) 
PHEV40 

(CD) BEV75 

5th 0.810 0.828 0.847 0.826 0.841 

25th 0.883 0.896 0.920 0.900 0.915 

50th 0.962 0.963 0.977 0.969 0.980 

75th 1.077 1.074 1.062 1.072 1.068 

95th 1.325 1.290 1.220 1.266 1.223 

 

Optimal Drive-Cycle Characteristics 

Creation of a suite of drive cycles representative of arbitrary 
percentile drivers was deemed infeasible. This outcome is the 
result of individual drivetrains being particularly well-suited to 
specific drive-cycle characteristics. This point is illustrated in 
Figure 11, where the relative efficiency of the simulated CV 
and HEV are plotted in 4D space. In this plot, the 2,154 
vehicle records are segmented into 13,622 trips and plotted 
with marker x-y coordinates relative to cycle speed and 
acceleration statistics, marker size relative to trip length, and 
marker color relative to percentile energy consumption rate 
per the specified powertrain. 

In terms of cycle statistics (speed, acceleration, distance), the 
CV and HEV plots represent the same 13,622 data points. This 
“point cloud” alone reveals interesting information concerning 
real-world drive data. We see that low-speed trips 
(approximately less than 15 mph) coincide with short-distance 
travel, and thus account for relatively small amounts of energy 
consumption. As travel speed increases, we see a tendency for 
trip distances to increase while acceleration metrics decrease. 
The observed inverse relationship between driving speed and 
acceleration can be linked to both behavioral norms (lack of 
driver-requested high-acceleration events during high speed 
travel) and technical realities (inability of most vehicles to 
deliver high acceleration at high speed). 

Concerning relative energy consumption rates, we see that the 
optimal drive cycle for our CV occupies the intersection of 
high-speed and low-acceleration travel. The industry-standard 
HWFET cycle is an exemplar of such a drive cycle, yielding 
energy consumption rates close to the lower bound. 
Alternatively, the HEV exhibits optimal energy consumption 
rates when driven over low speed, low acceleration cycles 
(near 20 mph, 0.5 mph/s). The differences in gradients 
between these two maps can be primarily attributed to the 
effects of regenerative braking made possible through electric 
hybridization. By recouping energy traditionally lost during 
braking events, our HEV is not as heavily penalized by the 
stop-and-go patterns characteristic of low-speed travel. 
Instead, the HEV achieves its highest fuel consumption values 
over cycles with high speed/acceleration metrics, presumably 

as a result of the aerodynamic, rolling, and inertial losses of 
the classical road load equation. 

These maps illustrate the challenge of synthesizing drive 
cycles capable of capturing arbitrary percentile energy 
consumption rates for disparate powertrains and underscore 
the utility of the synthesized drive cycle (presented in the 
previous section) in its ability to capture mean energy 
consumption rate regardless of powertrain configuration. 

 

 

Figure 11. CV and HEV efficiency gradients: marker 
location indicates the average speed and acceleration of each 
vehicle record; marker size indicates distance traveled in 
each vehicle record; and marker color indicates the relative 
energy consumption rate for each record. The locations of 
standard test cycles in this 2D space (including the 
synthesized cycle built using DRIVE) are also indicated. 
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Relative Efficiency across Powertrains 

Having highlighted the discrepancy between optimal drive- 
cycle characteristics for our CV and HEV, we now examine 
the relative efficiency of each drive cycle to understand how 
vehicle efficiency translates across powertrains. 

The data on CV and HEV efficiency from Figure 11 are 
repurposed for Figure 12 with percentile HEV fuel rate plotted 
against percentile CV fuel rate. This representation 
underscores the discrepancy in optimal drive-cycle 
characteristics between the simulated CV and HEV 
powertrains. For example, drive cycles falling in the 60th 
percentile fuel rate when simulated under a CV powertrain 
result in HEV fuel rates between the 10th and 90th percentiles. 

 

Figure 12. Comparison of HEV and CV relative fuel 
consumption rate for 13,622 simulated drive cycles 

 

Figure 13. Comparison of BEV and HEV relative fuel 
consumption rate for 13,622 simulated drive cycles 

Coloring the data by average trip speed provides insight 
concerning the nature of this discrepancy. This added 
dimension shows that high-speed trips achieve lower relative 
vehicle efficiencies in an HEV when compared to a CV, 
presumably as a result of the diminishing returns encountered 
in an HEV in the absence of stop-and-go conditions indicative 
of low-speed travel. Alternatively, medium-to-low speed trips 
achieve high relative vehicle efficiency under an HEV 
powertrain when compared to a CV. We note, however, that a 
subset of very low-speed trips exhibits a high relative fuel rate 
(low relative efficiency). The result is due to a large 
percentage of vehicle idle time relative to the number of miles 
traveled.  

We take this opportunity to underscore the difference between 
absolute and relative vehicle efficiency. The HEV powertrain 
resulted in greater absolute vehicle efficiency than the CV for 
each simulated trip. However, specific drive-cycle 
characteristics are best suited to individual powertrains (e.g., 
high-speed travel in CVs and low-speed travel in HEVs) 
resulting in a discontinuity in the comparison of relative 
efficiency. 

Fortunately, this discontinuity in relative efficiency appears 
unique to comparisons involving the CV. Figure 13 shows a 
comparison of the HEV and BEV relative efficiencies 
exhibiting a strong linear relationship between percentile 
rankings of drive cycles when simulated under distinct 
powertrains. This linear correlation is representative of the 
relationship between all combinations of the HEV, PHEV, and 
BEV powertrains. The CV is believed to be the outlier in this 
analysis due to its lack of regenerative braking, favoring 
cycles where high average speed is presumably an indicator of 
infrequent stop-and-go conditions. 

CONCLUSIONS 

In this study, we investigated the variation of driver 
aggression to assess its variation within large, real-world drive 
datasets, and quantify its effect on vehicle efficiency for 
multiple vehicle types. We have found that aggression 
variation between drivers can decrease fuel efficiency by more 
than 50% or increase it by more than 20% from average. 
Interestingly, across the population we investigated, the 
normalized efficiency deviation from average as a function of 
population percentile was found to be largely insensitive to 
powertrain. However, the specific high-efficiency drivers did 
vary across the CV, HEV, PHEV, and BEV powertrains, 
implying that ideal driving behavior varies with respect to 
powertrain. 

Accordingly, the relation of efficiency predicted from real-
world drive data to that predicted by the industry-standard 
HWFET, UDDS, LA92, and US06 drive cycles was not 
consistent across powertrains, either. Thus, we applied 
NREL’s DRIVE tool to synthesize a drive cycle that is 
capable of reproducing the average vehicle efficiency 
predicted from our sampling of real-world drive data. Our 
results showed that the predicted vehicle efficiency from 



8 

simulation of this drive cycle agrees with that of simulations 
of real-world data to within 0.7% for the four vehicles (five 
operational modes) addressed herein. Along with the supplied 
scaling factors, this drive cycle is, therefore, capable of 
accurately representing the total variation in vehicle efficiency 
we have observed in the employed vehicle records. 

It is important to note that none of the simulated drive cycles 
account for the effects of grade, wind, large vehicle auxiliary 
loads (e.g., heating, ventilation, and air-conditioning) or other 
more complex effects. Accounting for such factors will be the 
subject of future work. 
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DEFINITIONS 

AER  all-electric range 

BEV  battery electric vehicle 

CD  charge depleting 

CS  charge sustaining 

CV  conventional vehicle 

HEV  hybrid electric vehicle 

HWFET Highway Fuel Economy Driving Schedule 

LA92 Air Resources Board Dynamometer Driving 
Schedule 

NREL  National Renewable Energy Laboratory 

PHEV  plug-in hybrid electric vehicle 

UDDS  Urban Dynamometer Driving Schedule 
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