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Abstract. A major focus of North American bird conservation programs is the development of spatial 
planning tools to guide local and regional conservation efforts. A variety of databases is available 
to aid the development of spatial planning tools for bird conservation. These data sets are attractive 
because they are available for most of North America, are Internet accessible, and often are available 
in GIS format, seemingly making them ideal for spatial applications. However, the characteristics 
and quality of data available for bird conservation vary, which can greatly affect results of planning 
tools developed with the data. To be useful for on-the-ground conservation, spatial planning tools 
require data that are spatially and thematically accurate, fi ne-grained, have minimal bias, and were 
collected at the proper time. Bird data collected with limited planning or purpose suffer from limita-
tions caused by variable sampling effort, inconsistent sampling protocol, lack of a sampling frame-
work, small sample size, poor timing, inclusion of opportunistic observations, and a tendency to 
report unusual observations. Similarly, classifi cation accuracy, spatial and thematic resolution, tim-
ing, and consistency of landcover data vary widely. Data should not be used uncritically. How data 
are collected, processed, and disseminated will have a great effect on their use, the quality of resultant 
spatial tools, and the ability of these tools to provide useful guidance for decision making. No data 
or methods for developing useful spatial planning tools are perfect, but some are preferable to oth-
ers. We present factors to consider when evaluating data for use in spatial tools, provide examples of 
consequences of not considering those factors, and provide recommendations for use of spatial data.
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DATOS PARA ELABORAR MODELOS ESPACIALES: CRITERIOS PARA LA 
CONSERVACIÓN EFICAZ
Resumen. Un foco de central atención dentro de los programas de conservación de aves en Norteamérica, 
está en el desarrollo de herramientas de planifi cación espacial que sirvan de guía a los esfuerzos de 
conservación locales y regionales. Una diversidad de bases de datos está ya disponible para asistir en 
el desarrollo de estas herramientas para la conservación de aves. Estos sets de datos resultan en sumo 
sugestivos pues están disponibles en la mayor parte de América del Norte, son accesibles a través de la 
Internet y a menudo se encuentran en formato SIG, lo cual, combinado, les hace ostensiblemente ideales 
para aplicaciones espaciales. Sin embargo, las características y la calidad de los datos citados para la 
conservación de las aves varían, lo cual puede afectar profundamente los resultados de las herramientas 
de planifi cación, elaboradas a partir de ellos. Para ser de utilidad para la conservación en el terreno, las 
herramientas de planifi cación espacial requieren de datos que sean espacial y temáticamente precisos, 
minuciosos, con el mínimo de parcialidad y recogidos en los momentos adecuados. Los datos sobre 
aves recogidos con planifi cación o propósito limitado, sufren de limitaciones causadas por esfuerzos 
de muestreo variable, incoherente protocolo de muestreo, falta de un marco de muestreo, pequeño 
tamaño de las muestras, pobre coordinación, inclusión de observaciones oportunistas y tendencia a 
reportar observaciones inusuales. Asimismo varían grandemente los datos relativos a la precisión de la 
clasifi cación, la resolución espacial y temática, la coordinación y la consistencia de la cobertura terrestre. 
Los datos no deben ser utilizados sin sentido crítico. El modo en que se recojan, procesen y divulguen 
los datos, tendrá un amplio efecto sobre su propio uso, la calidad de las herramientas espaciales resul-
tantes a partir de ellos y la capacidad de estas herramientas de proporcionar una guía útil en la toma de 
decisiones. No existen datos o métodos perfectos para desarrollar herramientas útiles de planifi cación 
espacial, pero algunos sí son preferibles a otros. En este trabajo presentamos factores a considerar a la 
hora de evaluar datos para su uso en herramientas espaciales, proveemos ejemplos de las consecuencias 
del no considerar esos factores y ofrecemos recomendaciones para el uso de datos espaciales. 
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INTRODUCTION

Concern over decreasing bird populations has 
stimulated a variety of bird conservation plans, 
many of which (e.g., North American Waterfowl 
Management Plan, Partners in Flight, The 
Nature Conservancy’s Migratory Bird Program) 
explicitly promote a landscape approach to bird 
conservation. The increasing awareness of the 
importance of landscape composition to avian 
ecology and conservation, in conjunction with 
the recent upsurge in availability of spatial 
analysis software and data, has led to increased 
development and application of spatially explicit 
models to direct conservation actions (Wiens 
2002). These models, often referred to as spatial 
planning, conservation design, or conservation 
assessment tools, provide a habitat-based con-
text for conservation and are used for a variety of 
purposes, including identifi cation of habitat and 
lands for protection, prioritization of funding 
and programs, and identifi cation of opportuni-
ties for restoration. 

Developing these tools requires large 
amounts of data, particularly when statisti-
cal analyses are used to characterize biological 
relationships. Data used for the development 
of spatial models should be thematically and 
spatially accurate for the desired use, spatially 
balanced, complete, and representative of the 
population of interest to ensure quality spatial 
tools. This applies to response (bird) and pre-
dictor (landscape) data used in model develop-
ment. How data are collected, processed, and 
disseminated will have a great effect on their 
use, the quality of resultant spatial tools, and 
the ability of these tools to provide useful guid-
ance for decision making. 

In recent years, the number of datasets 
available for bird conservation planning has 
increased dramatically. These datasets are 
attractive for several reasons, as many use vol-
unteers, are widely available, and are acces-
sible from the Internet. Some of the data are 
available in GIS format, seemingly making 
them ideal for spatial applications. However, 
increased availability of spatial data for bird 
conservation planning presents potential prob-
lems as well as opportunity. The opportunity 
lies in the ability to use these data to develop 
models and tools that can better guide con-
servation actions. This differs from a more 
traditional use of bird survey data where pop-
ulations are monitored and, after some time 
interval, identifi ed population declines alert 
the conservation community to a problem, at 
which point remediation efforts begin. Caution 
must be used with readily available datasets 
as data that were collected for other purposes 

might provide poor or misleading guidance for 
decision makers when used to develop spatial 
planning tools.

Characteristics of data and concerns about 
data quality are hardly new topics, but the 
increased availability of spatial data over the 
Internet and increased emphasis on using these 
data to develop spatial models warrant new 
cautions. Just because data are available, or are 
even the “best available,” does not mean the 
data are pertinent to the issues at hand or are 
suitable for use (Krebs 1989, Anderson 2001). 
Data must be appropriate for the intended 
purpose to ensure that spatial models are bio-
logically sound and genuinely useful for guid-
ing conservation. Unfortunately, data may be 
biased, inaccurate, or otherwise poorly suited 
for developing spatial models. Consequently, 
naive use of these data in spatial models may 
result in misdirected efforts, wasted resources, 
or unintended consequences. Data used to 

develop spatial tools should be rigorously 
evaluated for completeness and accuracy, and 
in all cases, the biology of species as it relates 
to the purpose of the planning tool and the 
planned conservation treatment must be kept 
in mind. 

We discuss and provide examples of data 
characteristics and how they can infl uence spa-
tial tools. Problems that we identify relate to 
methods of data collection, as well as processes 
used to manipulate, display, transfer, and use 
data. Some of the latter border on modeling, 
which can also greatly infl uence the devel-
opment and application of spatial tools, but 
is beyond the scope of this paper (for more 
information on spatial modeling see Scott et 

GISs encourage the user to do things 
that are often not justifi ed by the nature 
of the data involved.

Goodchild and Gopal (1989)

Perhaps research and management 
biologists fail to realize how 
untrustworthy inferences from subjective, 
convenience samples can be…. 
Numbers from such surveys will not 
provide a basis for reliable knowledge 
and will represent only wasted resources.
  Anderson (2001)
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al. 2002, Woodbury 2003, Beauvais et al. 2006, 
Millspaugh and Thompson 2008). We offer 
solutions to help identify and address problems 
with data used in the development of spatial 
models for conservation planning. The issues 
we identify are not unique to the examples we 
provide but are inherent to most, if not all, data 
sets to varying degrees. Therefore, all data, 
regardless of their source, should be critically 
assessed prior to their use as to how well they 
meet the needs of the people and programs that 
will be using them, as well as how well they 
meet the assumptions and limitations of the 
methods used to analyze the data.

SPATIAL ACCURACY

A fundamental requirement of spatial data 
is that it be spatially accurate. This applies 
to both local and coarse scales. Obviously, 
point locations of species observations must 
be accurate if observations are to be linked to 
landcover data associated with that point to 
identify habitat associations and create spatial 
models at local or regional scales. But spatial 
accuracy is also important for very general, 
coarse-grained information such as species 
distribution maps. The distribution of bird 
species may be poorly known, and actual dis-
tribution can vary greatly among years. Field 
guides typically show generalized species 
range maps that are inherently imprecise, as a 
2.5 cm-wide map of North America printed in 
a field guide is portrayed at scale of approxi-
mately 1:200 000 000. But the physical act of 
digitizing a range map creates exact coordi-
nates for polygon boundaries, which may be 
interpreted as a level of precision that was not 
present in the data. In addition, maps digi-
tized on-screen may introduce error and can 
misplace populations. 

We compared range maps for Greater Prairie 
Chicken (Tympanuchus cupido) that we down-
loaded from the Internet (www.NatureServe.
org) to data digitized from maps developed 
by Greater Prairie Chicken researchers and 
managers in Westemeier and Gough (1999) 
and associated references. The Greater Prairie 
Chicken is an area-sensitive grassland bird that 
has been extirpated from most of its former 
range, is in danger of extirpation in much of its 
remaining range, and is a species of conserva-
tion concern on a variety of prioritization lists 
(Johnsgard 1973, Schroeder and Robb 1993, 
Rich et al. 2004). Assuming that the map devel-
oped from Westemeier and Gough (1999) more 
accurately represents the range of the Greater 
Prairie Chicken, the map downloaded from the 
Internet missed major portions of the Greater 

Prairie Chicken’s range in Kansas, Oklahoma, 
and Missouri, as well as smaller populations in 
Illinois, Iowa, Wisconsin, Minnesota, Missouri, 
South Dakota, and North Dakota (Fig. 1). In 
addition, the downloaded dataset included 
large areas that are not inhabited by Greater 
Prairie Chickens, and misplaced a population in 
Minnesota (Fig. 1). Data such as these are not 
suitable for conservation planning, even at a 
coarse scale. Regardless of which is correct, it 
is obvious that the results– and therefore the 
value– of spatial tools can be strongly infl u-
enced by the choice of data set.

Providers of data such as species distribution 
maps typically provide caveats to the effect that 
the data are coarse grained and are for general 
planning purposes only, and that data quality 
should be verifi ed or other data acquired for 
specifi c planning. However, the justifi cation of 
using such data only for coarse-grained analy-
ses begs the question as to the value of such 
coarse-grained data, as planning must be at 
least somewhat specifi c to have any value for 
on-the-ground treatments such as management 
or acquisition. Even at extremely coarse scales, 
though, data should not be used uncritically, 
as model predictions can change greatly when 
multiple range maps with spatial errors are 
overlaid (Dean et al. 1997). 

FIGURE 1. Apparent distribution of species var-
ies among data sources, as range of Greater 
Prairie Chicken in the United States according to 
NatureServe (blue) differs from range adapted from 
Westemeier and Gough (1999; red) and associated 
references. NatureServe data provided in collabora-
tion with Robert Ridgely, James Zook, The Nature 
Conservancy Migratory Bird Program, Conservation 
International Center for Applied Biodiversity Science, 
World Wildlife Fund US, and Environment Canada 
WILDSPACE.
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SPATIAL BALANCE AND SAMPLING BIAS

Spatial data should be spatially balanced and 
unbiased so the data are representative of the 
population of interest across the entire study 
area. These characteristics will be greatly infl u-
enced by the sampling framework and protocol 
used to collect the data, as well as the species 
being considered. Data from breeding bird 
atlases illustrate this issue well, but again, the 
issues we pose are present to some degree in 
many datasets. Some atlases attempt to address 
problems associated with unequal sampling 
effort by dividing a region into grid blocks and 
hiring biologists to sample blocks that volun-
teers have not surveyed. However, the issue 
remains that sampling effort varies among 
blocks, which, if not considered in analysis, will 
affect inferences made from the data and their 
value for conservation planning. This may be 
more problematic with some species than oth-
ers and can vary depending on detectability and 
distribution of the species being considered. 
Again, data should always be assessed in terms 
of biology and intended use rather than simply 
accepted or rejected.

For example, we considered the distribution 
of Ruffed Grouse (Bonasa umbellus), Ovenbird 
(Seiurus aurocapillus), and Barred Owl (Strix 
varia) in Wisconsin as documented by the 
Wisconsin Breeding Bird Atlas (Cutright et al. 
2006) relative to landcover as classifi ed by the 
Wiscland landcover database (Gurda 1994; Fig. 
2A). Wiscland data are based on satellite imag-
ery collected primarily in 1992 and follow a 
three-level hierarchical classifi cation scheme 
(metadata including accuracy  assessment are 
available at http://dnr.wi.gov/maps/gis/
datalandcover.html). According to Wiscland, 
the northern third of the state is heavily for-
ested, the southeastern third is predominantly 
agricultural and urban, and the middle third 
is a mixture of woodlands, wetlands, and agri-
culture. Given the distribution of forest cover, 
one would expect most observations of these 
three forest species to occur in the northern 
third of the state, where forest cover is domi-
nant. This is indeed the case for Ruffed Grouse 
and Ovenbird, and observations of these spe-
cies during the Wisconsin Breeding Bird 
Atlas closely refl ect the distribution of forest 
cover throughout the state (Figs. 2B and 2C). 
However, atlas data show more confi rmed 
breeding Barred Owls in the central and south-
ern parts of the state, which have relatively little 
forest, than the northern part of the state (Fig. 
2D). There are possible biological explanations 
for these patterns: Barred Owls may be less for-
est dependent than Ovenbird or Ruffed Grouse, 

or Barred Owls may be more likely to be found 
in fragmented forests than Ovenbird or Ruffed 
Grouse. Or it could simply be that Ruffed 
Grouse and Ovenbirds are diurnal, occur at 
relatively high densities, and are easily detected 
during the time periods when most birders 
are active, whereas Barred Owls are noctur-
nal, occur at relatively low densities, and are 
best detected at night when fewer birders are 
active. Consequently, apparent Barred Owl dis-
tribution likely refl ects survey effort as well as 
habitat, as northern Wisconsin has few people 
compared to central and southern Wisconsin. In 
short, known presence of a species at a site may 
be a refl ection of survey effort rather than habi-
tat quality. The relationship between survey 
effort and detected species richness has been 
well documented; r values between species 
richness and sampling effort include 0.57 for 
Pennsylvania birds in a coordinated breeding 
bird atlas (Brauning 1992) and 0.98 for plants in 
a biodiversity database (Hortal et al. 2007).

Natural Heritage Inventory data are fre-
quently suggested as data sources for plan-
ning and evaluation tools in bird conservation 
efforts. These data are attractive as they are 
available from established programs, are avail-
able for most of the North American continent, 
and are often accessible from the Internet. In 
many cases, the data come with extensive meta-
data. However, Natural Heritage Inventory 
data may not be appropriate in some cases or 
available for some species of interest. 

First, given limitations of funding and staff, 
some natural heritage databases must limit the 
number of species for which they include data, 
with priority justly given to threatened and 
endangered species. Second, many of the data 
were collected and reported opportunistically 
(Beauvais et al. 2006, Stein et al. 2008) and infer-
ences made from the data will be infl uenced by 
variable sampling effort, inconsistent sampling 
protocol, inclusion of opportunistic observations, 
and a tendency to report unusual observations. 
Such data are not reliable for making inferences 
about wildlife populations (Anderson 2001) and 
models, program  assessments, and conservation 

Considerable quantities of ecological 
survey data have accumulated over 
the last few decades, but there is little 
information on its reliability.  Indeed, 
ecologists in general have been slow to 
address questions of data quality and 
observer error.
 Cherrill and McClean (1995)
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efforts based on anecdotal occurrence data may 
be fl awed (McKelvey et al. 2008). Consequently, 
opportunistic observations should be carefully 
fi ltered for negative data, element identity, 
mapping precision, historical records, season of 
occurrence, and extra-limital records (Beauvais 
et al. 2006).

We viewed data from the North Dakota 
Natural Heritage Inventory database and 
found 109 records for the endangered Least 
Tern (Sterna antillarum), widely distributed 
throughout the limited range of this species 
in the state (Fig. 3A). In this case, the large 

number of records suggests that the data may 
be the result of a coordinated survey effort, 
and that the data warrant further consider-
ation. However, the same database had only 
one observation for the much more abundant 
and widespread Black Tern (Chlidonias niger), 
reported from a predominantly wooded state 
park outside the areas where Black Terns are 
most likely to be found in North Dakota (Fig. 
3B). Clearly, the single observation indicates 
that these data are insuffi cient for develop-
ment of spatial tools for Black Terns, but even 
if there were more observations, the unusual 

FIGURE 2. Detection and apparent distribution of forest birds vary among species. (A) Percent of the Wisconsin 
landscape classified as forest within an 800-m radius moving window. (B) Breeding status of Ovenbird, (C) 
Ruffed Grouse, and (D) Barred Owl in Wisconsin as determined by breeding bird atlas. Red circle and ovals in 
(D) indicate areas in northern Wisconsin where owl research or nocturnal surveys took place.



Spatial Data Quality—Niemuth et al. 401

location of this sighting would  warrant cau-
tion about how well it represents Black Terns 
in North Dakota. 

COMPLETENESS AND RESOLUTION 
OF RESPONSE DATA

A problem with many species presence 
datasets is the lack of absence data (areas 
where birds were not present or were not 
detected during surveys), which compli-
cates analysis and limits inferences that can 
be made from the data. For example, species 
presence data are sometimes used to identify 
all cover types in which a species was found, 
and this model of habitat use is then applied 

across the landscape. The usefulness of a 
 spatial tool can be greatly increased by inclu-
sion of data on species absence as well as pres-
ence, as this enables determination of what 

FIGURE 3. (A) Records of the rare Least Tern (black triangles) in North Dakota from North Dakota Natural 
Heritage Inventory data greatly outnumber (B) record of Black Tern (white triangle at tip of white arrow). 
Probability of occurrence based on associations between Black Terns and landscape characteristics (including 
wetlands) following methodology outlined in Niemuth et al. (2008).

All the fancy algorithms, statistical gym-
nastics, and mapping tricks in the world 
can’t help poor input data.  … the qual-
ity and quantity of occurrence data and 
environmental data will be the primary 
determinants of the quality and predictive 
power of the model and resulting map.

Beauvais et al. (2006)
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habitats birds used in relation to what was 
not used. Although the same species  presence 
data may be used, the analyses differ in that 
the first simply documents use whereas the 
second determines selection. This difference is 
not trivial, as two very different products can 
result from the exact same data, with tremen-
dous implications for conservation planning. 
The second approach requires better data, as 
well as additional thought and processing, but 
provides far stronger inferences and bases for 
conservation. 

An example of this is a recent conserva-
tion plan developed within the U.S. Fish and 
Wildlife Service that prioritized landscapes 
for conservation in the northern Great Plains 
based in part on presence models for 13 spe-
cies of grassland birds. According to model 
descriptions, 10 (77%) of the 13 species had 
been found in dry agriculture or irrigated agri-
culture crop fi elds, or both, as well as grass-
land. Consequently, spatial models for these 10 
species identifi ed agricultural lands and grass-
lands where the species could be expected to 
be found. This was reasonable, as the original 
purpose of the models was to show where 
birds might occur with no regard to density 
or demographics. However, the conservation 
plan used these models to prioritize land-
scapes, assigning equal points to agricultural 
lands and grasslands for conservation of these 
10 species. Grassland birds have experienced 
the steepest, most consistent, and widespread 
population declines of any bird group in North 
America (Knopf 1996) primarily because of 
conversion of grasslands to agriculture. But 
according to the conservation plan in question, 
lands in grass would receive the same score 
after being plowed up and converted to crop 
fi elds. This is biologically unsound, and illus-
trates how the value of data is determined in 
part by the question being asked and how the 
data are used. 

A variety of techniques exist for analyzing 
presence-only data, but many are sensitive to 
sample size, extent of species distribution, and 
degree of specialization of species being consid-
ered (Elith et al. 2006, Hernandez et al. 2006). 
Correctly analyzed and presented, data col-
lected from well-designed presence-absence 
(Sauer 2008), occupancy (MacKenzie et al. 2006), 
or density (Buckland et al. 2004) surveys will 
provide better biological information, overcome 
shortcomings associated with presence-only 
data, calibrate estimated frequency of occur-
rence, and reduce uncertainties and the false 
sense of precision associated with some habitat 
models and maps (Elith et al. 2002, Guisan et al. 
2005, Elith et al. 2006).

SPATIAL RESOLUTION OF DATA AND 
PLANNING TOOLS

Proper resolution of data and analysis are 
critical to understanding biological relation-
ships, as well as the development and imple-
mentation of spatial planning tools. Changes 
in extent and grain of study areas and data 
can signifi cantly alter perceptions of landscape 
composition and habitat selection (Wiens 1989), 
which will in turn affect development and inter-
pretation of spatial tools, as well as subsequent 
recommended conservation actions. 

Many data are available or used at a very 
coarse resolution (i.e., EPA hexagons, 7.5’ 
quadrangles, civil townships, or watersheds). 
Data with extremely coarse resolution may 
provide some general snapshot of national 
conditions, but will likely provide no new 
information and are susceptible to problems 
of scaling. Because of these issues and other 
limitations, coarse-grained data are rarely 

appropriate for planning specific conservation 
actions. Even if fine-grained models are being 
considered, spatial errors associated with 
coarse-grained biological response data may 
prevent development of meaningful models, 
as actual locations and landcover types used 
by birds may not be known.

Breeding bird atlases can provide useful 
information on the broad-scale distribution 
of species, but the coarse resolution of many 
atlases (e.g., portions of civil townships or 
USGS 7.5’ topographic quadrangles) and lack 
of habitat linkages precludes planning at the 
resolution at which conservation actions take 
place. More recent efforts have linked bird 
observations and habitat (e.g., Great Basin Bird 
Observatory 2005), which provides a stronger 
biological foundation for conservation.

Even if habitat characteristics were recorded 
where species were detected, the resolution 
at which data were processed and models 

Data may be useless for several reasons.  
They may be unreliable or unrepeatable.  
They may be perfectly reliable and 
accurate but irrelevant to the problem at 
hand. They may be reliable, accurate, 
and terribly relevant but not collected 
at the right season of the year. Or the 
experimental design may be so hopeless 
that a statistical analysis is not possible.

Krebs (1989)
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 developed determines the value of atlas proj-
ects for assessing conservation value or guiding 
conservation actions. For example, data from 
the Wisconsin Breeding Bird Atlas (Cutright 
et al. 2006) show blocks where Greater Prairie 
Chickens were recorded, but coarse-grained 
blocks were simply assigned a value indicating 
species status (Fig. 4A). Summary maps provide 
no indication of where the birds were within an 
atlas cell, their densities, or what types of habitat 
were present. A spatial model developed using 
landcover data and Greater Prairie Chicken lek 
locations in the same area (Fig. 4B) is more use-
ful because it provides information at a fi ner 
resolution and articulates relationships between 
Greater Prairie Chickens and landscape char-
acteristics. Because Greater Prairie Chickens 
were associated with the amount of grassland 

and wetland, proximity to other populations 
of Greater Prairie Chickens, and the absence of 
forest cover, planners and managers can assess 
the potential effect of conservation actions such 
as tree removal and grassland restoration on 
habitat for Greater Prairie Chickens.

Information loss can be especially problem-
atic when large polygons (e.g., watersheds) are 
used to denote the presence of features recorded 
as points. Watersheds such as those identifi ed 
by the United States Geological Survey’s 8-digit 
hydrologic unit codes (HUCs; Fig. 5) are often 
used as an analytical unit when reporting occur-
rence of biological elements such as bird obser-
vations. Using watersheds as sampling units or 
to report species occurrence reduces the value 
of data as resolution is coarse, habitat hetero-
geneity within a watershed is masked, and 

FIGURE 4. Resolution of and information in spatial representations for conservation planning vary among 
methods. (A) Breeding status of Greater Prairie Chicken in western Portage County, Wisconsin, as determined 
by breeding bird atlas has coarse spatial resolution and provides little information for local action. (B) Modeled 
habitat suitability for Greater Prairie Chickens in the same area (Niemuth 2003) shows a range of values at a 
much finer spatial scale, providing additional information that allows targeting of lands at scale usable by plan-
ners and managers. Gridlines in (B) indicate section lines at 1.6-km intervals.
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watershed boundaries may have little biologi-
cal meaning relative to the conservation ques-
tion being addressed. 

For example, in an analysis conducted for a 
U.S. National Wildlife Refuge, element occur-
rences from a watershed that came within 
2 km of the refuge boundary were ignored 
because they were in a different watershed, 
while occurrences within the watershed the 
refuge occupied were counted, even though 
portions of the watershed were 260 km from 
the refuge (Fig. 6). Data that are processed and 
reported in such a coarse manner will have lit-
tle value for guiding conservation actions, and 
will likely be subject to scale-related errors of 
omission and commission.

In addition, different-sized and different-
shaped watersheds are likely to introduce area 
effects into the data and subsequent models. 
The area of 8-digit HUCs in the conterminous 

FIGURE 5. Size of watersheds identified by eight-digit Hydrologic Unit Codes (HUCs) in the conterminous 
United States varies dramatically. Digits indicate area (ha) of HUCs < 10 000 ha.

FIGURE 6. (left) Size of eight-digit Hydrologic Unit 
Code (HUCs) and location of national wildlife refuge 
(red star) in relation to HUC boundaries influenced 
how data were used to estimate diversity on the ref-
uge. Distance from refuge to the far end of the HUC 
is 260 km.
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United States ranges from <1 ha to >2.4 mil-
lion ha, excluding the Great Lakes, which are 
larger (Fig. 5). When determining species pres-
ence or richness, sample units serve as the “net” 
by which species or threats are captured and 
recorded. Variably sized watersheds result in 
variable sampling effort and larger watersheds 
are more likely to have infl ated estimates of spe-
cies presence or richness due to passive sam-
pling (Connor and McCoy 1979). 

A common practice in spatial planning is to 
use large units such as watersheds for an ini-
tial, coarse-grained analysis to identify general 
priority areas and then use fi ner-grained infor-
mation to more precisely identify priority areas 
within the coarse-grained priority zones. This 
process is problematic for two reasons. 

First, an initial analysis that uses poor qual-
ity data and ignores issues of scale and variable 
sampling effort will do a poor job of identify-
ing priority areas due to errors of omission and 
commission (Fig. 1) and thereby produce mis-
leading results. Consequently, fi ner-grained, 
local analysis conducted within priority areas 
identifi ed by the coarse-grained analysis will 
only prioritize a poorly selected portion of the 
landscape, disregarding areas with potential 
value for conservation action that could not be 
identifi ed due to errors of omission in data used 
in the coarse-grained analysis. 

Second, an additional, fi ne-grained analy-
sis would provide more information if it were 
conducted across the complete area of interest, 
rather than a poorly selected subset of the area of 
interest. Hence, there is little reason to conduct 
the initial, coarse-grained analysis. The two-step 
approach would work if the only errors were 
errors of commission, but this would require a 
very inclusive approach to delineating species 
ranges and cataloging occurrences, which could 
verge on a comprehensive analysis of the entire 
area of interest. Performing one analysis using 
scales and data appropriate to the biology of the 
species and the program implementing conser-
vation actions will provide one useful product, 
as opposed to two potentially fl awed products. 
For all these reasons, resolution of fi ne-grained 
data should be maintained, and not degraded 
by data providers or users. One exception to 
this rule would be to protect rare species by 
only providing generalized, rather than high 
precision, locations, but this would only apply 
to data made available to the public, not data 
used for modeling.

Selection of appropriate scales for biologi-
cal response and resolution of spatial models 
should be carefully considered when evaluating 
data, as the response to scale will differ among 
species (Wiens 1989). It is important to note 

that, after fi ne-grained analyses are complete, 
users can still display boundaries of coarse-
grained units to place model output in the con-
text of watersheds or political boundaries such 
as counties.

DATA INTEGRITY

Geographic information systems provide an 
excellent opportunity to unwittingly launder 
data of poor or unknown quality. This can be 
accomplished in a variety of ways. For exam-
ple, poor quality data (e.g., species presence 
as in Fig. 1) or subjective values (e.g., degree 
of threat) can be entered into a database and 
then linked to geographic areas such as water-
sheds. These values can then be mathemati-
cally manipulated or combined with other data, 
some of which may be objective and unbiased. 
Resulting tables or maps may have an objective 
or quantitative aura that, on closer inspection, 
is found to be false. Similarly, subjective evalu-
ations of important blocks of habitat can be 
digitized, thus transforming subjective “circles 
on a map” into “spatially explicit habitat goals 
developed using the best available informa-
tion.” Finally, areas identifi ed and delineated as 
having high species richness through multiple 
overlays might not even have target species 
present (Fig. 1). Unfortunately, such errors are 
often unknown, as species identity is typically 
lost or not reported when the overlay process is 
used to create maps of species richness. 

How a question is posed and results are pre-
sented can have a signifi cant infl uence on how 
data are used, as well as the biological founda-
tion of the resulting spatial tool and its value 
for spatial planning. As mentioned previously, 
overlaying is a core GIS manipulation and lends 
itself to using “species richness” or similar mea-
sures as a biological response. Diversity metrics 
often are inappropriate as a response variable 
in models for conservation planning (Conroy 
and Noon 1996, Villard et al. 1998, Goldstein 
1999). Richness analyses are problematic for a 
variety of reasons, including poor consideration 
of species involved, differing life histories and 
habitat requirements, and issues of scale (Noss 
1987, Rodda 1993, Conroy and Noon 1996, 
Dean et al. 1997). These problems are exacer-
bated when richness measures are estimated 
from poorly developed and untested models 
developed from coarse habitat associations. 
An important reason for not using overlays of 
atlas or heritage data is that such summaries 
lack the biological mechanisms or habitat link-
ages present in a modeling approach, and sim-
ply indicate whether or not a species has been 
recorded within a block. This provides little 
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insight into the suitability of unsampled areas 
and precludes identifi cation of specifi c sites for 
conservation or management action. Finally, 
the lack of mechanisms or habitat linkages does 
not allow identifi cation of defi ciencies in habitat 
(i.e., isolation, lack of key cover types) that can 
be addressed through appropriate management 
actions—which likely vary among species.

COMPLETENESS AND ACCURACY OF 
LANDCOVER DATA

The quality of any spatial planning tool also 
will be determined by the quality of landcover 
data used in developing and applying the hab-
itat model. Landcover data can be acquired in 
several ways, some of which are inherently 
coarse-grained and subject to error. For exam-
ple, the aerial photograph of a landscape in 
Fig. 7A contains considerable information that 

can be visually interpreted, but is not directly 
interpretable by a GIS. Fig. 7B shows wetlands 
in the landscape that were mapped, classi-
fied, and digitized by the National Wetlands 
Inventory (NWI), which provides information 
about wetlands and their location. Wetlands 
information can be combined with other 
digital data to help develop a more compre-
hensive landcover layer (Fig. 7C). However, 
wetlands were mapped and digitized as they 
appeared in 1979 during periods of optimal 
water conditions (Wilen and Bates 1995) and 
water levels and wetland area can vary con-
siderably within and among years (Kantrud 
et al. 1989). Classified digital landcover data 
with 30-m resolution for the area (Fig. 7C) pro-
vides thematic classes not present in the aerial 
photograph (Fig. 7A), but the coarse thematic, 
temporal, and spatial resolution provide gen-
eral information only.

FIGURE 7. Amount and type of information that can be inferred from landcover data vary with source and 
application. (A) Aerial photograph of landscape in central Sheridan County, North Dakota, taken in 2003. (B) 
Wetland basins derived from 1979 NWI data for the same area. (C) Digital landcover data for the same area 
based on satellite imagery collected in 1992 with NWI wetland basins incorporated into layer. Non-urban roads 
follow section lines at 1.6-km intervals.
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Most digital landcover data that cover large 
spatial extents are based on satellite imagery 
that has been processed to separate signatures 
that can be associated with various landcover 
classes. However, classifi cation of satellite 
imagery is subject to considerable error caused 
by a variety of factors including variation in 
land use and vegetation, shading, sensor varia-
tion, choice of landcover classes, timing, spatial 
error, and differences in phenology, soil types, 
and soil moisture (see Thapa and Bossler [1992], 
Green [1994], Lillesand and Kiefer [2000], 
Thogmartin et al. [2004]). Consequently, an 
assessment of classifi cation accuracy should 
always be reported in any spatial analysis so 
users of spatial products have an idea of how 
reliable the data (and resultant tools) are. 
Unfortunately, many spatial analyses ignore 
this inevitable error and treat the data as though 
it were completely accurate, even though error 
in the landcover classifi cation might consider-
ably bias results of the spatial analysis. 

Classifi cation accuracy varies among datas-
ets and even among classes within a dataset. For 
example, in a pixel-level assessment of National 
Landcover Data for six states in the northern 
Great Plains and Rocky Mountain Region (avail-
able at http://landcover.usgs.gov/accuracy/
pdf/region8.pdf), user’s accuracy for 20 land-
cover classes ranged from 1% to 79%, with an 
overall accuracy of 60%. Acceptable levels of 
error in any dataset will be determined by the 
goals and intended use of the conservation 
assessment. But clearly, the value of a spatial 
planning tool will be compromised by low accu-
racy of landcover data. Conservation planners 
using such data must be aware of its limitations 
and verify fi eld conditions before implementing 
conservation actions. Also, the composition and 
confi guration of landscapes will change over 
time; landcover data are snapshots that do not 
capture dynamics that may affect population 
responses. Limitations like this should be explic-
itly explained when presenting results of model-
ing efforts.

Differences in landcover classifi cation are 
often apparent at boundaries such as state lines 
or the boundary between two adjacent satellite 
images. Users should be aware of landcover 
datasets that are clipped to irregular lines 
(e.g., Bird Conservation Region or watershed 
boundaries) or are “feathered’ along edges. 
Clipping scenes to natural boundaries has a 
biological appeal, but these practices may sim-
ply be a strategy to reduce obvious changes in 
classifi cation that are apparent along abrupt 
transition lines.

The effect of classifi cation error on spatial 
models will depend in part on which landcover 

classes are incorrectly classifi ed and which 
classes are confused. Typically, similar classes 
(e.g., mixed forest and coniferous forest) are 
more readily confused than dissimilar classes 
(e.g., plowed fi elds and coniferous forest). In 
some cases and when biologically appropriate, 
it may be useful to combine similar classes that 
are easily confused. There is a certain appeal to 
having many landcover classes (i.e., high the-
matic resolution), as multiple classes appear 
more biologically realistic in that they better 
represent the variety of landcover types present 
on the landscape. However, classifi cation accu-
racy tends to decline as the number of classes 
increases, and the user may have to fi nd an 
appropriate tradeoff between thematic resolu-
tion and classifi cation accuracy. 

CONCLUSIONS AND SOLUTIONS

Given recent emphasis on landscape-level 
conservation, interest in using spatially explicit 
data is high. However, adoption and application 
of spatial data should be driven by need, pur-
pose, and biology, not enthusiasm. Landcover 
data are often referred to as “remotely sensed” 
because the platform from which the data were 
recorded was not in contact with the area under 
consideration (Lillesand and Kiefer 2000). In a 
similar vein, bird data can also be considered 
remote as data anomalies that negatively affect 
analysis or biological nuances important to anal-
ysis and interpretation may be lost when data are 
used by people who are remote from the indi-
viduals and populations that were sampled.

Given the diversity of applications for spa-
tial data and the variety of ways in which data 
characteristics can infl uence results of spatial 
tools, it is diffi cult to prescribe universal rec-
ommendations or quality thresholds for spatial 
data. An awareness of data characteristics and 
how they infl uence models is paramount, as 
is a precise and clearly articulated purpose for 
the spatial tool and a knowledge of how it will 
be implemented. Both providers and users of 
data used in bird conservation planning should 
investigate and assess all data as they relate to 

Unfortunately, the recent rapid 
increase in the availability and use of 
GIS and other software has not been 
accompanied by a concomitant increase 
in the use of techniques for assessing 
uncertainty in spatial data and spatial 
models.

Woodbury (2003)
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the intended purpose and fi nal application of 
the spatial tool (Table 1). Users should also con-
sult a statistician and spatial modeler, as well 
as data providers if additional information is 
needed. No data will meet all criteria, but users 
should identify biases and errors in biologi-
cal and landcover data, and understand how 
these biases and errors might affect spatial tools 
developed with the data. For example, factors 
such as survey effort can be incorporated into 
models, but such information must be known 
to do so. Data may be promoted as being the 
“best available,” but users must keep in mind 
that that does not guarantee that the data are 
useful for the intended application. 

Users should work within limitations of data 
and use a transparent process that relates to 
species biology and programs being addressed. 
Black-box software or coarse-grained analy-
ses allow minimal insight into and control over 
analyses, reducing the opportunity to assess and 
address data problems. Users should avoid such 
approaches or else determine that algorithms 
and approaches used by software packages are 
appropriate to the specifi c purpose of the spatial 
tool. Finally, users should report assumptions, 

potential biases, and issues of accuracy regard-
ing the data they used. If an accuracy assessment 
is not included in landcover metadata or at the 
site where landcover data were obtained, it may 
be necessary to conduct an assessment for the 
area covered by the spatial tool (see Lillesand 
and Kiefer 2000). At a minimum, the absence of 
accuracy data and the resulting uncertainty in 
model output should be reported.

Bird data collected on systematic surveys are 
available that can be used for guiding conser-
vation of many bird species. For example, data 
from the North American Breeding Bird Survey 
(Sauer et al. 2008) can be used in conjunction 
with digital landcover data to develop spatial 
models for a variety of species (Newbold and 
Eadie 2004, Niemuth et al. 2005, Thogmartin 
et al. 2006a), although these data and models 
also have their own limitations that must be 
acknowledged (Thogmartin et al. 2006b). If data 
sets of suitable quality simply do not exist for 
an identifi ed species, need, and area, it may 
be necessary to collect appropriate data, either 
by establishing a new survey or modifying an 
existing survey. The expense that collecting 
additional data incurs should be offset by the 

TABLE 1. FACTORS AND CHARACTERISTICS TO BE CONSIDERED WHEN ASSESSING DATA FOR APPROPRIATENESS TO PURPOSE; SPATIAL 
AND THEMATIC ACCURACY; RESOLUTION AND INTEGRITY; AND BIAS WITH REGARD TO DEVELOPMENT OF SPATIAL TOOLS. THIS LIST 
IS NOT COMPREHENSIVE AND DOES NOT INCLUDE SPECIFIC PRESCRIPTIONS, BUT IS INTENDED TO STIMULATE INVESTIGATION AND 
UNDERSTANDING OF HOW DATA CHARACTERISTICS AFFECT SPATIAL TOOLS USED FOR CONSERVATION.

Appropriateness of data to purpose
 Has a specifi c, clearly defi ned purpose that includes end use been identifi ed for the spatial tool?
 Have the process and data been reviewed and logic-checked by biologists and modelers familiar with the 

species, geographic area, and purpose of the tool?
 Do the data appear to be representative of the population of interest?
 Are data available across the entire region of interest or will multiple datasets with differing characteristics 

be used?
 Are landcover data classes appropriate for the intended purpose?
 Does timing of landcover data represent conditions when bird data were collected?
Spatial and Thematic Accuracy
 Have locations of data points and lines been determined to be accurate?
 Is classifi cation accuracy of landcover data known?
 Is classifi cation accuracy of pertinent landcover classes suffi cient for the intended purpose?
Data Resolution and Integrity
 Have metadata been reviewed and data providers consulted regarding the specifi c application of the data?
 Is spatial resolution of data appropriate for the intended conservation treatment? 
 Are landcover data suffi ciently fi ne to represent features of interest?
 Is the level of response (i.e., presence/absence, density) suffi cient for the intended purpose of the planning 

tool?
 Are data allocated to coarse units such as watersheds?
 Is sample size suffi ciently large to meet requirements of analysis and provide precise parameter estimates?
Bias
 Did sampling effort vary across time or throughout the area of interest?
 Does the dataset contain opportunistic observations?
 Were data collection points determined using a statistically based sampling design? 
 Were data collected using a consistent and appropriate sampling protocol?
 Was timing of data collection appropriate to the purpose?
 Have the data and proposed analyses been reviewed by a statistician who is aware of the intended 

conservation treatment and end use of the spatial tool?
 Have biases or shortcomings of these or similar data been identifi ed by other researchers?
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increased effi ciency in conservation delivery 
that is expected to be gained from having a 
robust spatial tool to guide decisions. If a spa-
tial tool is not expected to provide increased 
effi ciency in conservation delivery, the need 
for developing that tool should be re-assessed. 
As an example, the value of data from many 
atlas projects could be increased by conducting 
standardized surveys at a statistically designed 
sample of sites, particularly if the surveys incor-
porated estimates of detectability (i.e., Buckland 
et al. 2004, MacKenzie et al. 2006). Data from 
these surveys would not suffer from variable 
sampling effort and could be used to develop 
habitat associations that could then be extrapo-
lated to portions of the landscape not sampled. 
This would be especially valuable in sparsely 
populated states where only a small portion of 
the state is sampled during atlas projects. When 
quality bird data are lacking and cannot be 
acquired, conceptual models can provide use-
ful guidance based on biological relationships 
(Clevenger et al. 2002, Niemuth et al. 2005), 
although assumptions of the model must be 
clearly identifi ed. Whatever data and methods 
are used, conservation planners must bear in 
mind that bird populations and land cover are 
variable and that data sets represent past con-
ditions that might not be pertinent to present 
decisions.

Final responsibility for spatial tools lies with 
the modelers who acquire and use data, but 
data providers should help ensure that their 
data are accurate and unbiased. Data provid-
ers should strive to only provide high-quality 
data with accompanying metadata, realizing 
that some users will not read the metadata or 
understand the implications of using data in a 
manner inconsistent with the way it was col-
lected. In some cases, providers might want 
to withhold data with known pitfalls. Data 
providers should expect and plan for spatial 
applications of their data by providing data 
that are accurately georeferenced and not 
simply assigned to a coarse unit (i.e., county, 
watershed, township) in which the observation 
occurred. Finally, providers and users should 
have an in-depth understanding of the pro-
cesses required for developing useful spatial 
tools, as well as how these tools are used for 
on-the-ground conservation.
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