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SUMMARY OF FINDINGS 

 

We used the relationships described in a study of mallard nest structures to build a Geographic 

Information System (GIS) based model that would predict the probability of structure use by 

mallards.  We assessed the model performance using data from a long-term study and used the 

assessment to illustrate a useful approach to predictive model building and validation.  The 

model employed an existing GIS developed to aid in waterfowl management in western 

Minnesota.  We used 3 predictors: 1) nest structure type, 2) 4 measures of the size of open 

water area containing the structure, and 3) a measure that described the mean aggregate visual 

obstruction of all residual cover during the early part of the nesting season (15 March – 20 April) 

in a buffer with a 1.6 km radius around each structure.  We built the predictive model using the 

approach outlined by Harrell (2001), which is an alternative to data-based model selection 

methods (e.g., stepwise variable selection).  We used a bootstrap procedure to obtain an 

unbiased measure of future predictive performance of the models that we fit.  Unfortunately, we 

failed to produce a GIS model with much predictive power.  A number of reasons related to the 

difficulty of predicting biological outcomes determined by constantly changing features in the 

landscape were likely responsible.  The process we employed forced us to think about the 

problem rather than using a data-based selection algorithm to determine the most important 

variables in the model. 

 



INTRODUCTION 

 

Knowing which type of nest structure to use and where to deploy them in a landscape should be 

important to waterfowl managers.  Zicus et al. (2006a) studied mallard (Anas platyrhynchos) 

nest structure occupancy in an attempt to understand how landscape features affected structure 

use.  They were interested in the effect of 5 covariates, and their final fitted model was complex, 

including 3 interactions and 1 main effect.  More nests were initiated as the size of the open 

water area where structures were deployed increased.  Simultaneously, cover influence 

interacted with period of the nesting season such that nesting probability was positively 

associated with cover height and density early in the season and negatively associated with 

cover height and density late in the season.   

 

Nest success in structures is generally good (Eskowich et al. 1998) with early nests having 

higher nest success (M. Zicus, Minnesota Department of Natural Resources, unpublished data).  

Consequently, hen mortality associated with renesting (Sargeant et al. 1984) would be reduced 

for hens nesting in structures early in the year.  Further, brood and duckling survival from early-

hatched nests is believed to be greater than that of later-hatched nests (e.g., Rotella and Ratti 

1992, Dzus and Clark 1998, Krapu et al. 2000).  These understandings led Zicus et al. (2006a) 

to recommend that nest structures be deployed in larger wetlands where early-season residual 

cover in the surrounding uplands was most abundant within 1 km of the structure.  Geographic 

Information System (GIS) models might provide powerful tools to help waterfowl managers 

decide where nest structure should be placed in complex landscapes. 

 

OBJECTIVES 

 

• Build a GIS-based model that wildlife managers can use to help determine best 

placement of mallard nest structures, 



 

• assess the model performance using data from a long-term study, and 

 

• as a secondary objective, illustrate a useful approach to predictive model building and 

validation. 

 

METHODS 

 

We used the relationships described in a study of mallard nest structures (Zicus et al. 2006a) to 

build a GIS-based model that would predict the probability of structure use by mallards.  The 

response that we were interested in modeling was the mean number of mallard ducklings 

(DUCKS) produced in each structure included in a long-term study of mallard nest structures 

(Zicus et al. 2006b).  We used 3 predictors: 1) nest structure type (TYPE), 2) 4 measures of the 

size of open water area containing the structure (NWI, GAP, FSA03, FSA97), and 3) a measure 

that described the mean aggregate visual obstruction (MVOM) of all residual cover during the 

early part of the nesting season in a buffer with a 1.6 km radius around each structure. 

 

Data used to build the model 

 

We began with a GIS developed to aid in waterfowl management in western Minnesota (D. 

Hertel, unpublished data).  Classified Landsat Thematic Mapper data from 2000 and 2001 was 

used to estimate the area of each habitat class within buffers (1.6 km radius) around each nest 

structure.    

 

The following variables were included in the model: 

 



DUCKS. – We determined the mean number of ducklings from 110 nest structures across the 

entire nesting season from 1996 – 2003 (M. Zicus, unpublished data). 

 

TYPE. – We considered 2 types of cylindrical nest structures, those having either a single or a 

double cylinder (Zicus et al. 2006a).  

 

Open water area measures. – Different measures of the size of the open water area containing 

the structure were determined to compare model performance with different data sources.  

These measures were from: 1) open water polygons in National Wetland Inventory data (i.e., 

NWI; D. Hertel, unpublished data), 2) areas classified as open water in MN-GAP land cover 

data (i.e., GAP; Minnesota Department of Natural Resources 2004, U. S. Geological Survey 

1989), 3) open water areas digitized from 2003 Farm Services Agency (FSA) aerial photography 

(i.e., FSA03; M. Zicus, unpublished data), and 4) open water areas digitized 1997 FSA aerial 

photography (i.e., FSA97; Zicus et al 2006a).  The distribution of the NWI water data was highly 

skewed.  As a result, we expected a few data points with extreme values (e.g., >100 ha) to have 

substantial influence on the model fit.  Therefore, we also consider log(NWI + 0.1) which had a 

more bell-shaped distribution.  Both NWI and GAP data are readily available for large areas of 

western Minnesota, whereas FSA97 and FSA03 data were included here to determine the 

potential gain in predictive power that might be obtained if efforts were made to obtain more up-

to-date measures of open water.   

 

MVOM. – We created a variable for the mean aggregate visual obstruction measurement 

(MVOM) for 15 March – 20 April for each buffer around each structure (D. Hertel, unpublished 

data).  First, each 28 m x 28 m GIS cell within a particular habitat class in the buffer was 

assigned a habitat-specific VOM (Table 1).  Next, a weighted VOM was calculated for each cell 

in a particular habitat class by multiplying the area of that habitat class in the buffer by the 

habitat-specific VOM.  A mean aggregate visual obstruction measurement (MVOM) was then 



calculated for all cells in the buffer by summing the weighted VOMs across all habitat classes in 

the buffer and dividing by the total area of the buffer. 

  

Modeling 

 

We built predictive models using the approach outlined by Harrell (2001).  We first determined a 

reasonable degree of model complexity using guidelines based on our sample size.  This 

approach can be summarized as “determine the number of degrees of freedom (df) that can be 

spent, and then spend them without any further model simplification.”  Harrell suggested a 

minimum of 10 – 20 observations per parameter considered, including those that account for 

potential non-linear effects.  Burnham and Anderson (1998) suggested a similar liberal rule of 

10 observations per predictor.  Consequently, we believed 5-10 parameters to be a maximum 

for the 110 structures that we observed. 

 

We used Spearman’s ρ2 (i.e., between response and predictors) to help determine how to 

apportion the df among the available predictors (e.g., to account for potential non-linearities) 

(Harrell 2001).  Spearman’s ρ2 is a generalization of the rank correlation between two variables 

that can account for nonmonotonic relationships (e.g., using quadratic ranks) (Harrell 2001:127).  

We included all variables for which we examined ρ2 in the model (i.e., ρ2 was used only to 

determine the degree of non-linearity in the model).  These steps defined an a priori full model 

from which we made our inferences; thereby avoiding problems associated with model selection 

algorithms (e.g., over fit models that predict new data poorly and biased p-values and 

confidence intervals arising from models selected using data-based selection procedures).   

 

We used a bootstrap procedure to obtain an unbiased measure of future predictive performance 

of the models that we fit (Harrell 2001).  We fit the model to 1,000 bootstrapped data sets, and 

the fitted parameters were used to calculate predicted values for all observations in the original 



dataset (as well as the bootstrap data set).  We then calculated two R2 values for each 

bootstrap replication:  1) using the original data and predicted values from the bootstrap model 

fit and 2) using the bootstrap data and the predicted values from the bootstrap model fit.  The 

difference between these two values is an estimate of “optimism” (i.e., resulting from fitting and 

“testing” the model on the same dataset).  A final adjusted R2 value was then determined by 

subtracting the mean “optimism” from the R2 obtained from the original fit of the model to the full 

dataset.  Bootstrap calculations were carried out using functions in the Design library of the R 

computing package (Harrell 2001, R Core Development Team 2005). We also calculated the 

usual adjusted R2.  

 

RESULTS 

 

Model complexity 

 

Values of Spearman’s ρ2
 indicated that both TYPE and MVOMs had less potential for explaining 

variation in DUCKS than open water area (Figure 1).  Consequently, we assumed the MVOM 

effect was linear (i.e., a single df was used to model the relationship between MVOMs and 

DUCKS).  The relatively greater values of Spearman’s ρ2 for open water area and previous work 

(Zicus et al. 2006a) suggested that more dfs should be spent to model the effect of open water 

area.  Values of Spearman’s ρ2 were considerably higher for the digitized water measures 

(FSA03 and FSA97) than either NWI or GAP measures of open water.   

 

Two models were fit using digitized water data (FSA03 and FSA97):  

 

DUCKS = TYPE + MVOM + water (using a linear spline with 2 df), and                  (1) 

 

DUCKS = TYPE + MVOM + water (using a restricted cubic spline with 2 df).          (2) 



 

Model (1) used a single knot (i.e., the location where the slope was assumed to change), while 

model (2) used 3 knots (2 of these were located at the boundary of the data; the fit of a 

restricted cubic spline is constrained to be linear outside the range of the boundary knots).  The 

medians of non-zero observations (3.66 and 3.14 for FSA03 and the FSA97 data, respectively) 

were chosen as the knot location for the linear spline.  Knots for the cubic spline used the 10th, 

50th, and 90th percentiles of the data. 

 

The GAP data only had 6 observations that were >0 and were not considered further.  Given the 

low values of Spearman’s ρ2 for the NWI water data, we considered a model that assumed the 

effect of open water area was linear.  In addition, we examined a model with a 2 dfs restricted 

cubic spline with knot locations again determined using the 10th, 50th, and 90th percentiles of the 

data. 

 

Estimates of predictive power 

 

Models that used FSA03 and FSA97 water data performed considerably better than models 

using the NWI or GAP water data (Table 2).  However, none of the models performed 

particularly well.  The model using the FSA97 data had an R2 of 0.14, suggesting that the open 

water area measured in Zicus et al. (2006a) along with structure type and MVOM values 

explained 14% of the variation in mean duckling production per structure.  However, bootstrap 

validation suggested this model would perform considerably worse when applied to new data 

(i.e., it would explain only 6% of the variation).  By comparison, R2 measures for models using 

the NWI data were all less than 5% and their adjusted measures were negative, suggesting that 

the grand mean might predict new data better than the fitted model.   

 



TYPE and MVOM values had p-values considerably >0.05 in all of the models, suggesting that 

they were not associated DUCKS (see also exploratory plots with smoothing lines; Figure 2).  

These results suggest that the MVOM values are not likely to be useful for predicting the mean 

duckling production (across all periods and years) in nesting structures and that the available 

measures of open water area (NWI and GAP) are of questionable value for modeling duckling 

production. 

 

DISCUSSION 

 

Models having strong predictive ability are often difficult to construct (Steyerberg et al. 2001, 

Ambler et al. 2002, Steyerberg et al. 2003).  There are a number of reasons why our efforts may 

have failed to produce a GIS model with much predictive power.  First, mean visual obstruction 

measurements (MVOM) within 1 km of each structure may not accurately reflect the importance 

of surrounding cover.  In particular, the height and density of cover in individual buffers having 

the same land use could actually differ markedly.  Second, while Zicus et al. (2006a) 

recommended making structure placement decisions using early spring landscape conditions 

(as described by aggregate MVOMs in the buffer), their recommendations were intended to 

encourage production of young early in the season and not necessarily the maximum 

production of young across the entire nesting season.  Zicus et al. (2006a) found that 

occupancy rates increased with VOM measurements early in the nesting season and decreased 

with VOMs later in the nesting season.  Given the time-varying effect of VOM on occupancy 

rates, it was not surprising to discover that MVOM was unrelated to season-long duckling 

production.  Lastly, although cover and water body size both vary temporally, we were forced to 

use measurements of these variables from a single year.  The relationship between these 

habitat measurements and the average productivity of structures (across the 8 years of the 

study) may be much weaker than the relationship between habitat covariates and productivity in 

any given year.     



 

The question as to how much predictive power a model would need to have in order to be useful 

is difficult to answer.  Regardless, the models using either NWI or GAP measures of open water 

had essentially no predictive power, and a better measure of open water would be needed to 

produce a model with even low predictive ability.  FSA97 open water values produced the model 

with the most predictive ability, but even this was low, perhaps because water conditions had 

changed significantly between 1997 and 2003.  Identifying specific locations for management 

actions such as nest structures will be difficult when the desired biological outcomes are 

determined by features in the landscape that are constantly changing.  A sensible strategy for 

structure placement and management would be to place structures in larger wetlands (>10 

acres) where early-season residual cover in the surrounding uplands is most abundant   (Zicus 

2006a; Minnesota Department of Natural Resources.  2006.  Using cylindrical nest structures to 

increase mallard nest success.  Unpublished pamphlet.).  This should reduce the number of 

structures that never get used as 19 of 20 structures that were not used during the 8-year study 

were deployed in open water areas <2 acres in size (M. Zicus, unpublished data).  In addition, 

we recommend that managers continue to collect data on structure use as well as habitat 

measurements surrounding the structure (e.g., cover types, wetland size) so that we might 

refine our models in the future. 

 

Despite the poor predictability of the models considered, we believe the general modeling 

approach is a useful alternative to data-based model selection methods (e.g., stepwise variable 

selection).  Harrell (2001:56-57) provides 7 disadvantages of stepwise selection methods 

(repeated verbatim below): 

 

1. It yields R2 values that are biased high. 



2. The ordinary F and 2χ  test statistics do not have the claimed distribution.  Variable 

selection is based on methods (e.g., F tests for nested models) that were intended to be 

used to test only prespecified hypotheses. 

3. The method yields standard errors of regression coefficient estimates that are biased 

low and confidence intervals for effects and predicted values that are falsely narrow. 

4. It yields P-values that are too small (i.e., there are several multiple comparison 

problems) and that do not have the proper meaning, and the proper correction for them 

is a very difficult problem. 

5. It provides regression coefficients that are biased high in absolute value and need 

shrinkage.  Even if only a single predictor were being analyzed and one only reported 

the regression coefficient for that predictor if its association with Y were “statistically 

significant,” the estimate of the regression coefficient β̂  is biased (too large in absolute 

value).  To put this in symbols for the case where we obtain a positive association 

( β̂ >0), E( β̂ | P < 0.05, β̂  > 0) > β. 

6. Rather than solving problems caused by collinearity, variable selection is made arbitrary 

by collinearity. 

7. It allows us to not think about the problem. 

Wildlife biologists have become familiar with problems associated with stepwise selection 

methods due to the popular book by Burnham and Anderson (2002) on model averaging and 

multi-model inference.  As a result, model averaging and multi-model inference using AIC 

weights (Burnham and Anderson 2002) have become exceedingly prevalent in the wildlife 

literature.  Unfortunately, few alternatives to AIC model averaging have been presented in 

applied ecology/wildlife journals (Guthery et al. 2005), and therefore model averaging is applied 

routinely without critical thinking.  We would argue that approaches that utilize a full model with 

candidate predictors chosen based on subject matter considerations will often provide a viable 

alternative to model averaging/multi-model inference.  The former approach offers several 



advantages over the AIC-based model-averaging paradigm.  For example, more time can be 

spent on diagnostics and model validation since a single model is considered rather than a suite 

of candidate models.  In addition, if interest lies in estimation (rather than prediction), calculation 

of valid confidence intervals is straightforward (estimates of regression coefficients and σ2 are 

not biased from considering multiple models or model reduction) (Harrell 2001, Ambler 2002).   

 

The benefits of using a full model for inference are likely to be greatest when the effective 

sample size is >10 – 20 times the number of candidate predictors (Harrell 2001, Ambler 2002).  

For problems where the ratio of effective sample size to number of predictors is smaller, we 

recommend first trying to eliminate variables that do not have strong biological support (e.g., 

based on prior studies).  This process is advantageous because it forces the researcher to think 

about the problem rather than using a data-based selection algorithm to determine the most 

important variables.  In addition, it is generally beneficial to eliminate redundant variables, 

variables with lots of missing values, and variables that have very narrow distributions (Harrell 

2001).  If the number of remaining predictors is still >10 – 20 times the effective sample size, 

model averaging or other methods of shrinkage (e.g., penalized estimation or lasso) may offer 

improved predictions (Harrell 2001, Ambler 2002). 
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Table 1.  Land use cover types and source of visual obstruction measurements (VOM) used to estimate mean visual 

obstruction measurements (MVOMs) in the GIS model. 

GIS model  Source data 

Cover type VOM (dm)a  Cover type VOM (dm) Reference 

Grassland 1.16  CRP grass 1.30 Zicusd 

   WMA grass 1.02 Zicus 

   WPA grass 0.86 Zicus 

   Other grass 0.86 Zicus 

Cropland 0.001  Croplandb 0.001 Mack 1991 

Hayland 0.80  Hayland 0.80 Mack 1991 

Right-of-way 0.75  Gravel township road 0.71 Zicus 

   Gravel county road 0.40 Zicus 

   Gravel CSAHc  0.40 Zicus 

   Paved CSAH 0.65 Zicus 

   State highway 0.41 Zicus 

   Railroad 1.60 Zicus 

Woodland 1.70  Woodland 1.70 Mack 1991 

Odd areas 1.70  Odd areas 1.70 Mack 1991 

Vegetated wetlands 0.67  Seasonal 1.00 Mack 1991 

   Semi-permanent 2.00 Mack 1991 

   Temporary 0.50 Mack 1991 

   Permanent 1.00 Mack 1991 

Open water/barren 0.00  Open water/barren 0.00 Mack 1991 

 
aVisual obstruction measurement corresponding to residual conditions in early spring (15 March – 20 April).  Values are 

weighted by the area of the various source types occurring in western Minnesota. 

 

bMack (1991) presents values for many types of cropland.  The value for fall-plowed cropland was used. 

 

cCASH = county state aid highway. 

 

dVOM is the mean value for 1997-1999 based on unpublished data collected as part of Zicus et al. (2006a).



Table 2.  Measures of future predictive accuracy of GIS models predicting average duckling production from 110 nest 

structures in Grant County Minnesota, 1997 – 2003. 

 
R2 

 

Modela 

 

Original 
Adjusted 

(from linear regression) 

Adjusted 

(bootstrap) 

FSA03, lsp 0.087 0.052 0.009 

FSA03, rcs 0.084 0.050 0.009 

FSA97, lsp 0.138 0.105 0.061 

FSA97, rcs 0.134 0.102 0.056 

NWI, linear 0.024 -0.013 -0.042 

NWI, rcs 0.042 0.006 -0.045 

Log(NWI), linear 0.027 0.000 -0.036 

Log(NWI), rcs 0.053 0.017 -0.031 

 
alsp = linear spline model with 1 knot (2 dfs); rcs = restricted cubic spline model with 2 knots (3 dfs).
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Figure 1.  Spearman’s ρ2

 indicating the strength of the relationship between mean ducking 

production (DUCKS) and each predictor variable (TYPE = indicator variable for structure type, 

MVOM measures, NWI open water measure, GAP open water measure, FSA03 open water 

measure, FSA97 open water measure). 
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Figure 2.  Exploratory plots of mean duckling production/year for each structure versus structure type, mean VOM measures across 

1997-1999 (M. Zicus, unpublished data), and MVOM (D. Hertel, unpublished data).  Lines represent smooth curves estimated using 

locally weighted regression via the lowess function in R. 
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Figure 3.  Exploratory plots of mean duckling production/year/structure versus FAS97 open water, FSA03 open water, NWI open 

water (all values), NWI open water (only values < 100), log(NWI  + 0.1), and GAP open water.  Lines represent smooth curves 

estimated using locally weighted regression via the lowess function in R. 


