

Overview and Agenda

- Welcome and Overview
- Department of Energy: High Impact Technology Program
- University of Colorado, Boulder: Ultra Low Temperature
 Freezer Demonstration
- Department of Energy: Technology Demonstration
 Opportunities
- Additional Resources
- Question & Answer Session

Today's Presenters

Name	Organization
Amy Jiron	Department of Energy
Kathy Ramirez Aguilar	University of Colorado, Boulder

The High Impact Technology Catalyst Team

U.S. Department of Energy
Amy Jiron
Andy Mitchell
Charles Llenza
Kristen Taddonio

Navigant Consulting, Inc.

Collin Weber

Dan Chwastyk

William Goetzler

Michael Deru, NREL Jessica Granderson, LBNL Linda Sandahl, PNNL Melissa Voss Lapsa, ORNL

High Impact Technology (HIT) Catalyst

Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL

Energy Efficiency & Renewable Energy

Commercial Buildings Integration Building Technologies Office

How can we Catalyze the adoption of high impact commercial building technologies?

Owners

Designers Engineers

Managers

Occupants

Financial Institutions

Stakeholder Engagement & Partnerships

Government

Utilities

Manufacturers
Dealers
Suppliers

Scientists

We look at a variety of factors... for example, RTUs

In the U.S., packaged units:

ENERGY FOOTPRINT

- condition 40 billion square feet of the commercial building floor space
- consume 2,100 trillion Btu of primary energy annually

STATE OF THE MARKET

Renewable Energy

Many RTUs are past their typical life span, functioning at much lower efficiency levels than new units, and are **ready to be replaced**.

TECHNICAL SAVINGS OPPORTUNITY

Current market conditions indicate more than **200-300 trillion Btu/year** at high penetration.

NEED: DRIVE RTU EFFICIENCY

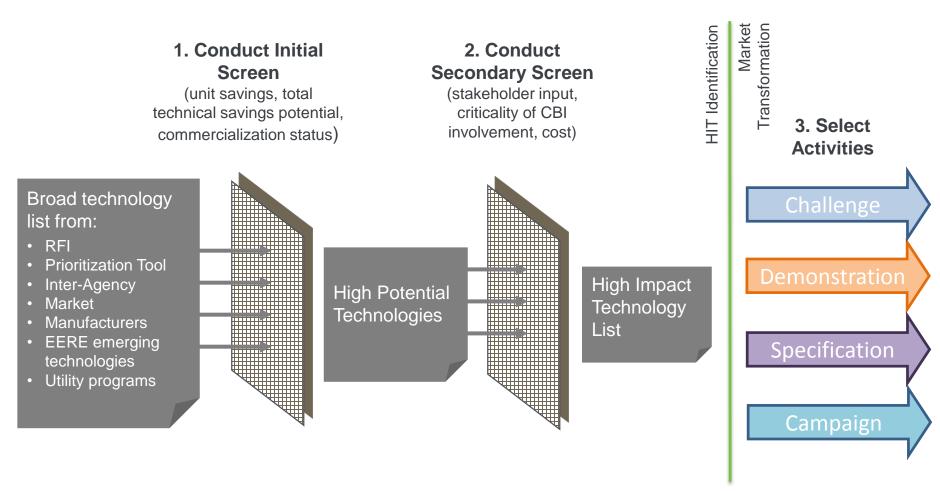
DOE developed the RTU Challenge Specification to drive new efficiencies and launched the Advanced RTU Campaign to increase adoption of existing efficiencies.

U.S. DEPARTMENT OF Energy Efficiency &

Putting it all together: The HIT Catalyst

Goal: The High Impact Technology (HIT) Catalyst will identify and prioritize cost-effective, underutilized, energy-efficient technologies so that we can focus resource development and deployment activities.

Methodology: Cohesive step-by-step strategies move techs from newly commercialized to full adoption. Each step in the tech-to-market pipeline has a purpose and connection to the next step; all are integrated into existing BTO deployment networks.


Target Market and Audience: Deploy HITs through partnerships with the commercial buildings industry via the Better Buildings Alliance, federal leaders, regional non-profits and efficiency organizations.

Outcome: Provide commercial building stakeholders with resources and proven deployment paths to accelerate implementation and market acceptance of HITs.

Identification and Evaluation of HITs

Identify HITs through a rigorous prioritization process; characterize HITs based on their stage in the product life cycle; develop appropriate resources; evaluate and implement the most effective deployment activities.

What is the most effective market transformation pathway?

Activities

Technology Demos

Theory of Impact: Building owners

are uncertain

about the performance of new technologies and risk adverse; real building performance information will make them more likely to adopt.

Technology Procurement

Theory of Impact:

Template language that outlines the

performance characteristics of proven and cost effective HITs streamlines purchasing, enables "apples to apples comparisons potentially lowering overall cost of adoption.

Technology Campaign

Theory of Impact:

Once a company has successfully

piloted a new technology through a campaign, they will replicate that technology throughout their building portfolio.

Outputs

Case Studies

Metric: Number of case studies Published

Specifications

Metric: Number of technical specs produced

Installations

Metric: Number of sites/sf/orgs committed

Key Outcomes

Greater organic adoption of HITs (leading to greater energy savings)

HITs support voluntary programs (leading to greater adoption and energy savings)

Collect HIT market transformation data (leading to higher efficiency candidate levels and energy savings)

to-Market

Ongoing Example - How HITs move through the Pipeline

Screen **Reduce Energy** Plan & Develop **Track Market Implement** Consumption **Uptake** (BTO goal) **Deployment through** Data influences cost CBI **Direct resource** Market stimulation via leaders' portfolios and **DEPLOYMENT** reductions and wrap up development and leading organizations consideration for demonstration via efficiency programs **STRATEGY** voluntary standards FY11-12: Produced FY13-15: Campaign for FY14-15: Utilities, REOs and FY15: Participation in the OEMs reference specs to uptake through the parking light LEEP Campaign provides **SPECIFICATION** via BBA. Lighting Energy Efficiency deploy efficiency levels reduces and information **ACTIVITIES** broadly through voluntary FY12: Conducted in Parking (LEEP) to help owner s reduce **CAMPAIGN** with market **DEMONSTRATION** via programs and/or energy costs. certification. Caliper program. partners and BBA. Parking lighting Campaign quantifies represents almost 1% of actual energy savings, all US use or 900M Measurement from market uptake trajectory, parking spots with 160M demos prove average and adoption by market light fixtures. - Measure penetration rates savings and reduce risk leaders. with market leaders for owners; case studies Data from LEEP supports Confirm tech penetration help make the business If 100% of parking lots the development of via market research **IMPACTS** and structures case. voluntary programs and - Demonstrate sufficient nationwide switched to efficiency program uptake for codes and By end of 2012, 10 BBA spec-level lighting, we offerings. standards consideration members representing would save over .85 U.S. DEPARTMENT OF Energy Efficiency & <5% of US parking space quads and \$4 **ENERGY** Renewable Energy billion/year. were using spec.

Steps to Prioritization

Phase 1: The HIT Matrix helps us identify market ready technologies including:

- information on technologies developed through work by the BTO Emerging Technologies team (P-Tool);
- technology-specific and national energy savings potential values;
- In total, over 400 measures to evaluate.
- The Matrix includes two screens for: 1) energy savings opportunity and deployment readiness; and 2) market factors.

Phase 2: **Peer Workshops** provide perspective on market factors and feedback on priority technologies identified in the Matrix:

- Academia, Federal Agencies, Utility, Regional Energy Organizations
- 28 unique organizations and 50 individuals participated
- RFI open for input by building owners/end-users and technology providers

What We Heard: the Preliminary HIT List

- Remain aware of the need for technology groupings,
 applications and packages rather than specific technology types;
 address the synergies between technologies
- Controls in general across all load types are an area where much work needs to be done. There are many competing platforms, protocols, etc. and many different ways to implement the control systems (individual fixture/load level, building level, etc.). End users are confused by the choices, afraid of technology obsolescence, and need guidance in this space.
- Don't always assume that a pure technology solution is the answer. In some cases, best practice or operational solutions can yield the same results at much lower costs.
- Data on "real use" and end user behavior is extremely important in weighing the benefits of a technology, as the gap between "real use" and "ideal use" can be large.
- There is value in **enabling technologies** such as smart metering, though it may be difficult to quantify independently.
- Generally speaking, there can never be too much / independent, third-party demonstration data.

HIT Priority List

Measure Name	Description	
LED Troffers with Controls	Deploy high-efficiency (solid-state) 2x4 troffers with added controls	
Packages of Building Management and Information Systems and Whole Building Diagnostics	Optimize whole-building management systems that enable the operation of multiple systems to minimize consumption based on occupancy, weather, fuel prices, etc.; includes adjustment of thermostats, schedules, set points, calibration.	
Auto Sash Fume Hoods for Laboratories	Deploy restructured laboratory fume hoods with automatic sash closure. This technology has an automatic sash closure system on a VAV hood that is controlled by an occupancy sensor.	
Shading & Awnings	Demonstrate energy reductions and other benefits to awnings and other shading devices on commercial buildings.	
Refrigeration Controls & Display Case Retrofits	 Use variable speed compressors in select new commercial refrigeration equipment; Retrofit display case doors with anti-sweat heaters, vinyl/composite door frames, and high-performance glass. 	
Heat Pump Water heaters	Deploy highest efficiency heat pump water heaters in residential and small commercial buildings	

Next?

Evaluate and update each year to reflect evolving market conditions and advances in technology.

Deployment Plan and Resource Development:

- Evaluate existing resources, gaps, barriers and potential partners
- Determine the most effective deployment channels

Select & Execute Deployment:

- Campaigns, Technology Demonstrations, Specifications
- Strategic Partnerships
- **Better Buildings**

...Hand Off and Start Over

Energy Efficiency & Renewable Energy

And, continue work with Better Buildings Partners!

+200 members from the private sector

Controlling +10 billion square feet of commercial building

space

Working together through 4
sector groups and 13
Technology Solutions
Teams

Making commercial buildings

20% more efficient by 2020

Join us for Tech Day at the Better Buildings Summit

Leading Edge to Market-Ready: How Does Technology fit within the Federal Technology Framework?

- The roles of different federal agencies in accelerating efficient building technologies.
- Representatives from ARPA-E, ESTCP, GPG, FEMP and BTO

Innovative Energy Saving Technologies on the Market Now

- Updates on new real building demonstrations,
- Dynamic glazing, touchless audits and data centers.

What's next? Tech-to-Market Projects for Next Generation Results.

- A suitcase that retro-commissions small buildings,
- Advanced control systems for plug and play devices,
- New easy-to-install air barriers,
- Promising technologies from ARPA-E's Building Energy Efficiency Through Innovative Thermodevices (BEETIT) program.

Kathy Ramirez Aguilar
Green Labs Program Manager

University of Colorado, Boulder

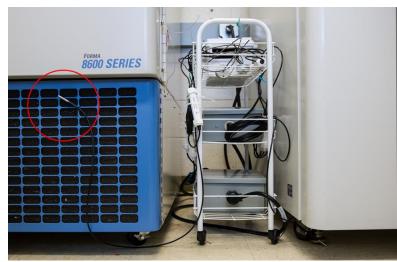
Ultra Low Temperature (ULT) Freezer Demo

The purpose of the demonstration was to evaluate the energy use of high-efficiency ULTs.

- Goals included:
 - Examine the effect of field conditions on ULT energy use
 - Collected energy, temperature, and door opening data for each ULT freezer in the study over a period of 5 months
 - Provide more information to purchasers seeking energy-efficient products
 - Support U.S. Department of Energy (DOE) and Better Buildings Alliance efforts to increase market penetration of high-efficiency ULTs

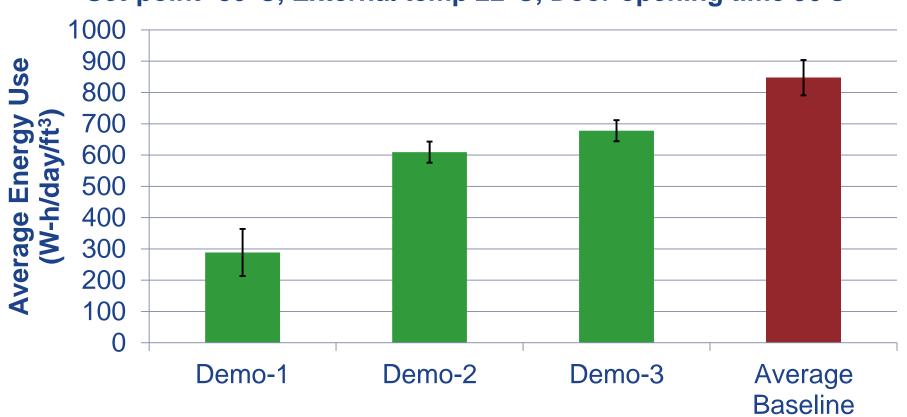
Why CU-Boulder Green Labs was Interested

- Aware of need for market change for lab equipment
- ULT freezers have been a focus of the CU Green Labs Program
- ~150 ULT freezers at CU-Boulder
- We wanted to help!



What was required?

- Permission to participate
- Locating the right freezers
- Engaging stakeholders
- Working with campus legal
- Responsibility for loaner
- On-site set-up with Navigant
- Troubleshooting
- Being point of contact



(Above pictures from Navigant)

Preliminary Results from DOE Demo

We observed that the demo ULTs used between 20% and 66% less energy than the average baseline ULT.

Calculated Daily Energy Use at Standard Set of Conditions: Set-point -80°C, External temp 22°C, Door opening time 90 s

Taking the Project Further

Engaged scientists to raise the temp from -80 to -70°C to include those impacts in the study

(Modified Graphic from UC Davis)

Give Your Compressor a Break!

Increase the temperature of your ULT(Ultra Low Temperature)
Freezer to -70° C

Save Energy While Extending Freezer Lifetime

Increasing the temperature means the compressor does not have to work as hard.
 Since the compressor works less, there is reduced risk for compressor failure.

*Since the compressor works less, there is reduced risk for compressor failure.
 *34 ULT freezers at CU-Boulder and 40 at UC-Davis are already at -70° C or warmer.

Join These CU-Boulder Labs That Are Already at -70° C

-Anseth
-Blumenthal
-Chen/Junge
-Collins/Stitzel

·Copley •Ehringer/Marks •Garcea

-Martin -Moore -Poyton -Schmidt -Shen -Smolen ·Taatjes
·Winey
·Xue

Han -Seals -Stein

For info on samples that labs are storing at -70° C or warmer go to ecenter.colorado.edu/greenlabs

CU Green Labs Contact: Kathy Ramirez greenlabs@colorado.edu 303-492-5562

Thoughts on the Experience

- Positive, learning experience for Green Labs
- Many pieces had to fall into place at CU-Boulder to enable participation
- Plan for more time than you think
- Worth our time to help influence market changes for lab equipment

Amy Jiron
High Impact Technology Catalyst

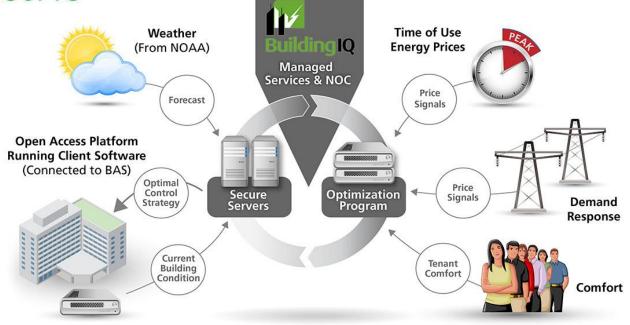
Department of Energy

HVAC Energy Savings through Novel HLR Air Treatment Technology from enVerid Systems.

- Company: enVerid Systems, Inc., based in Houston.
- Offering: HLR (HVAC Load Reduction)
 - Novel "Intelligent scrubber" modules added to HVAC systems
 - Eliminates most of the outside air → double digit % savings

- Deploy HLR retrofits in several representative commercial buildings/sites
- carefully monitor, document and analyze the performance, to demonstrate the energy savings and reliability.

- Technology: HLR modules continually and automatically remove CO₂ and VOCs from indoor air, thereby greatly reducing the need for air replacement and saving much of the power that HVAC systems use to treat the outside air intake.
 - Uses novel sorbents, automatically regenerated with intelligent algorithms
 - A scalable, easy-to-retrofit module that can be added to the existing HVAC system,
 - Cooling power savings can exceed 40% at peak and indoor air quality is improved.


Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC

Schneider Electric

SIEMENS

> 10% HVAC Energy Savings and > 5% HVAC Peak Load Reduction

15 buildings 7.5m Sq Ft Around the USA 27 Months

GOALS:

Show PEO's impact in driving building energy/ peak load savings Show PEO's ability to work with a variety of buildings Show that PEO can be taken to market at scale by partners

Northeast Energy Efficiency Partnerships Commercial Advanced Lighting Control (CALC) Demonstration and Deployment

- Networked, Intelligent Lighting Control Systems
- 10 demonstration projects across Northeast Region
- 40,000 Sq. Ft. average project size
- New Training and Incentive Programs to support technology packages

	Q4 2014	Q1 2015	Q2 2015	Q3 2015	Q4 2015	Q1 2016	Q2 2016
Select Technologies							
Select Sites							
Install Sites							

Visit <u>www.neep.org</u> or email <u>CALC@neep.org</u> for more information

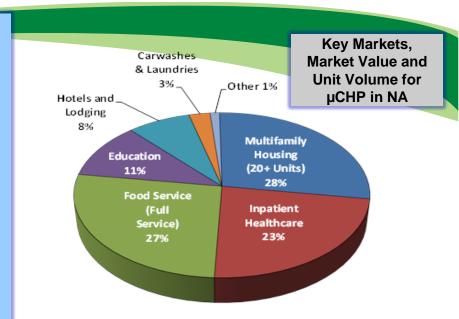
DEMONSTRATION OF µCHP IN LIGHT COMMERCIAL HOT WATER APPLICATIONS

AO Smith Corporation

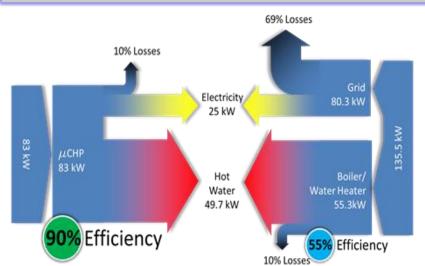
Goal: To achieve 275 TBtu in annual source energy savings in commercial buildings via large scale deployment of µCHP in North America.

Objective: Address identified market barriers via deployment of 8 field demonstration sites in NA

- Northeast, Midwest and California;
- >3000 gal/day, restaurants, hotels, healthcare, multi-family housing


Expected Outcome: Provide stake-holders with the information needed to build a sustainable market. Specifically:

- Verify value proposition of <3 year installed cost payback
- 2. Identify and simplify installation and service issues
- 3. Create effective training for installation & service personnel


Year 1: Site selection, market assessment, engine EPA regulatory approval

Year 2: Site installation, refinement, sub-contractor training

Overall Efficiency Comparing Conventional Electricity/Hot Water Production with a µCHP System

High Efficiency Motors for Refrigerated Open Display Cases

Company: QM Power, Inc.

Technology: advanced Q-Sync fan motor technology for 7-16 watt commercial

refrigeration fan applications

Objective: to install and verify performance for approximately 12,000 high efficiency Q-Sync fan assemblies in over 50 grocery sites throughout the US

Phase 1: Demonstration and Commercialization Planning, OEM Testing

Phase II: Limited Site Testing

Phase III: Site Demonstration, Testing and

Deployment

Type	Efficiency	Q-Sync advantage
Q-Sync	75%	
Shaded Pole	19%	+295%
PSC	35%	+114%
ECM	60%	+25%

If fully commercialized and adopted, Q-Sync motor applications have the potential to achieve over 0.6 quads and over \$1 billion of energy savings in building applications.

Other Real Building Technology Demonstrations

- Alternative Refrigerant Systems
- Multi-load Washing Machines
- Ultra-low Temperature Freezers
- Daylighting and Lighting Controls Retrofits in Office Perimeters
- Gas Unit Heaters
- Heat Pump Water Heaters
- LED Downlights
- RTU Challenge Units
- Advanced RTU Controls with Automated Fault Detection and Diagnostics

Participate in a Real Building Demonstration

- **enVerid HVAC Load Reduction**: looking for office, education, retail spaces or airport terminals without demand controlled ventilation or an Energy Recovery Ventilator.
- BuildingIQ Predictive Energy Optimization: already partnering with GSA and District of Columbia, looking for office, healthcare and enclosed retail malls, 100,000 sq. ft. or greater and digital controls at least on air handling units.
- A.O. Smith micro-Combined Heat and Power: looking for restaurant, healthcare, hospitality, multifamily or other with hot water demand greater than 3,000 gals/day in the Northeast, Midwest and California.
- Contact: <u>techdemo@ee.doe.gov</u>

Additional Resources

For More Information

- Participate and Find Out About Field Demonstration Projects
 - http://www4.eere.energy.gov/alliance/activities/demonstrations
- Updates from the High Impact Technology Catalyst
 - http://energy.gov/eere/buildings/high-impact-technology
- Request For Information (RFI) on High Impact Commercial Building Technologies
 - https://eere-exchange.energy.gov/
- Commercial Buildings Funding Opportunity Announcement
 - http://energy.gov/eere/buildings/articles/apply-fundingopportunity-advancing-solutions-improve-energy-efficiency

Question & Answer Session

Join Us for the Next Better Buildings Webinar

Making Utility Efficiency Funds Work for You

Date: Tuesday, December 2 **Time:** 3:00 – 4:00 PM EST

Overview: A grocery chain, major city, and manufacturing organization each describe how they have collaborated with utilities to bring big energy savings to their portfolios and help reduce the overall peak electricity demand for the utility. Presenters will offer recommendations for working with utilities to create innovative energy savings opportunities customized to your portfolio type.

Register <u>here</u>.

Additional Questions? Feel Free to Contact Us

betterbuildingswebinars@ee.doe.gov

Today's Presenters	Kathy Ramirez Aguilar University of Colorado, Boulder Kathryn.Ramirez@Colorado.edu	Amy Jiron Department of Energy Amy.Jiron@ee.doe.gov
DOE Program Leads	Holly Carr DOE, Better Buildings Challenge holly.carr@EE.Doe.Gov	Kristen Taddonio DOE, Better Buildings Alliance kristen.taddonio@EE.Doe.Gov
Program Support	Andrew Schulte ICF International andrew.schulte@icfi.com	John Jameson ICF International john.jameson@icfi.com

