

Maximizing Energy Savings in Laboratories

Moderator: Bill Tschudi, Lawrence Berkeley National Laboratory

Panelists: Chuck McKinney, Aircuity, Inc.

Tom Smith, Exposure Control Technologies, Inc.

Phil Wirdzek, International Institute for Sustainable Laboratories

Preliminary Results of Ultra-Low-Temperature Laboratory Freezer Demonstration

Study conducted by for the Better Buildings Alliance Laboratories Team

by Navigant Consulting

Table of Contents

Section 1: Introduction Section 2: Methodology Section 3: Results Section 4: Conclusions and Next Steps

The purpose of the field study was to demonstrate energy savings that can be achieved in the field with high-efficiency ULTs.

- Goals included:
 - Examine the effect of field conditions on ULT energy use
 - Provide more information to purchasers seeking energy-efficient products
 - Support DOE and BBA efforts to increase market penetration of high-efficiency ULTs

4

Introduction: Equipment Description

We examined ULTs with characteristics most representative of the market.

- Air-cooled condensing
- Upright configuration
- Cabinet volume of ~20-30 ft³

Typical ULT

We selected three ULTs to evaluate in the demonstration that we believed represented high-efficiency products.

- The selected demonstration ULTs:
 - Were within the top 25% of the market in terms of efficiency, based on existing manufacturer and field data*
 - Were manufactured within the last two years
 - Incorporated advanced technologies such as vacuuminsulated panels and/or alternative refrigeration system designs

*We were unable to verify the operating conditions and test protocols that the testers or manufacturers used in generating the existing data.

Methodology: ULTs Included in Demo

We evaluated each demonstration ULT at one host site alongside one or more "comparison" ULTs.

Table 1: Details of ULTs Included in the Demonstration

Unit #	Description	Brand/Model Number	Year of Manufacture	Host Site
Demo-1	Demo ULT #1	Stirling Ultracold SU780U	2013	University of Colorado at Boulder - MCDB Lab
Demo-2	Demo ULT #2	New Brunswick HEF U570	2012	University of Colorado at Boulder - iPhy Lab
Demo-3	Demo ULT #3	Panasonic VIP+ MDF-U76VC	2013	Michigan State University
Comp-1	Comparison ULT #1		2010	University of Colorado at Boulder-MCDB Lab
Comp-2	Comparison unit #2		2009	University of Colorado at Boulder - iPhy Lab
Comp-3	Comparison unit #3		2013	Michigan State University
Comp-4	Comparison unit #4		2012	Michigan State University

Methodology: Data Collection

We used instrumentation to collect data for each ULT.

Energy Use: Power Meter

Internal Temperature: Type T Thermocouple

External Temperature: Temp. Sensor

Door Openings: Magnetic State Logger

Results: Energy Savings (Preliminary)

We observed that the demo ULTs used less energy than the average comparison ULT.

Daily Energy Use at Standardized Conditions: Set-point -80 °C, External temp 22 °C, Door opening time 90 seconds per day

Results: Economic (Preliminary)

We conducted a simple payback analysis for each demo ULT vs. an average comparison ULT.

Table 4: Results of Simple Payback Analysis

Unit	Percent Energy Savings*	Annualized Energy Savings (MWh)*	Annualized Cost Savings (\$)**	Estimated Payback Period (years)†
Demo-1	66%	5.6	\$580	3
Demo-2	28%	1.7	\$180	9
Demo-3	20%	1.6	\$164	15

*Energy savings are normalized to the same volume in cubic feet. Does not include space conditioning impacts.

**Assuming an average U.S. electricity price of 10.34 cents per kWh (data from Energy Information Administration)

†Based on 30% discount for both demo and comparison ULTs. Actual prices and payback periods may vary due to distributor discounts.

Conclusions (Preliminary)

The study demonstrated energy savings that were achieved in the field with the demo ULTs.

- Demo ULTs saved between 20% and 66% energy versus the average comparison ULT on a per-cubicfoot basis
- Simple payback analysis estimated payback periods of ~3 to 15 years, depending on the ULT, available discount, and electricity rate.
- We could not draw conclusions about long-term reliability, whole-cabinet temperature performance, or characteristics of other products not included in the study.

Next Steps

Next steps include disseminating the results and supporting future deployment activities.

- Detailed results of the demonstration will be published in a report and made available on the BBA website.
- We plan to develop and deploy additional resources to help increase market penetration of high-efficiency ULTs through the HIT (High Impact Technology) Program.

12

Thank you!

Contact: Rebecca Legett Navigant Consulting 415-399-2156 rebecca.legett@navigant.com

U.S. DEPARTMENT OF

Building Relationships with I2SL For Sustainable Laboratories And Related High-Technology Facility Design, Engineering, and Operation

> Better Building Summit May 7, 2014

Laboratory Buildings – I2SL Building on Labs21

"Labs embody the spirit, culture, and economy of our age...what the cathedral was to the 14th century and the office building was to the 20th century, the laboratory is to the 21st century."

Don Prowler, FAIA 1950-2002 Professor of Architecture, Building Climatology, and Sustainability Principles

National Renewable Energy Laboratory Science and Technology Facility

I²SL TODAY

- Labs21 and the International Institute for Sustainable Laboratories (I²SL)
- Recent Developments
- I²SL Today
 - Global Community
 - Initiatives
- 2014 I²SL Annual Conference
- Working with Others

Laboratories for the 21st Century (Labs21[®]) – I²SL Partnership

- Labs21 is dedicated to improving the energy and environmental performance of U.S. laboratories
- Co-sponsorship (1999)
 - U.S. Environmental Protection Agency (EPA)
 - U.S. Department of Energy (DOE)
 - I²SL (2006)
- I²SL program network now includes well over 8,000 individuals

I²SL Vision and Mission

Vision

- To enable a global network of collaboration to move laboratories and other high-technology facilities into balance with the natural world, available resources, and a flexibility that maintains and exceeds the technological standards necessary to meet their purposes over time.
- Mission
 - Building upon Labs21 to educate, share, and promote the development of sustainable highperformance facilities worldwide.

²SL

Recent Developments

- EPA shifted Labs21 program responsibility to I²SL
- I²SL Becomes a Membership-Based Organization with Chapters
- Labs21 Tools and Case Studies available on I²SL Websites
- Labs21 Annual Conference renamed to I²SL Annual Conference
 - 2014 I²SL Annual Conference
 September 22-24 Orlando, Florida

I²SL Expands Labs21 Mission

- Quarterly e-Newsletters, Monthly Webinars and Annual Conferences
- Global Community which Helps Shape the I²SL Program of Activities
- Topical Working Groups
- Technical Assistance and Support

Professional Training, Education and CEUs

Training/Certifying High-Tech Operations and Management Professionals

- Laney College, an NSF Center of Excellence in Oakland, CA, and I²SL have identified knowledge, skills, and abilities gaps in existing training
- These gaps have been discussed at the last few Labs21 Annual Conferences
- I²SL and Laney issued a survey to validate findings and to identify processes to assess next steps

BIM for Operations and Management

- I²SL, National Institute of Building Sciences, and International Facility Management Association survey released in fall 2012
- Results encourage operations and management tools for BIM platform
- Survey summary article to be published in Lab Design Newsletter, Building Operations Management magazine, and Journal of Building Information Modeling
- Meeting at 2013 I²SL Annual Conference to present and discuss current client BIM projects incorporating operations/management

With Tools for Life Cycle Performance BIM Lifecycle View

Continuous Performance Improvement Program (CPIP)

- Co-Chaired by University of Minnesota with I²SL
- Two functioning sub-working groups
 - User behaviors and lab equipment procurement (UofCO and UC Irvine)
 - Existing Operating Standards and Building Systems Information Sharing
- Planned meeting at 2014 I²SL Annual Conference

Metering and Sub-Metering

Communicating for Results

- Understanding the value of sub-metering laboratory spaces
- How the practice can support management and sustainability goals.
- Reviews new tools created to help owners and laboratory personnel understand the value of energy management
- Why information modifies user behaviors.

3rd Party Energy Efficiency Project Financing - High Tech

- To increase 3rd party financing in Federal laboratories and high-tech buildings
- Incorporate energy conservation measures (ECMs) that include both whole building integrated design and user processes
- Help Federal agencies understand what integrated ECMs are possible and what a successful project incorporates
- Federal agencies must have the confidence that their energy service provider understands their mission needs and will enhance their performance

Energy Programs at R&D Universities

- I²SL has been asked to undertake a modest effort to develop a compendium of energy efficiency programs for laboratories undertaken by 10 tier-one research universities in the United States
- The compendium of case studies is intended to document the schools' efforts, identify common themes and applications of the programs, and highlight innovative approaches that may have been undertaken
- I²SL expects to invite other schools to provide their information to help build this database and make it available to I²SL Members

Student Design Competition Promotes Systems Integration

GET STARTED

Phil Wirdzek President and Executive Director I²SL 703.425.1258

info@i2sl.org www.i2sl.org

Lab Ventilation Optimization Process (LVOP)

A Cost Effective Process to Achieve

Safe, Energy Efficient & Sustainable Lab Buildings

Thomas C. Smith

ECT, Inc.

919-319-4290 www.exposurecontroltechnologies.com tcsmith@labhoodpro.com

Safe, Energy Efficient & Sustainable Lab Buildings

Goal: High Performance Laboratories

- Chemistry Labs
- Nanotechnology Labs
- Biology Labs (BSL 2-4)
- Radiological Labs **Animal Vivariums**
 - Cleanrooms

- Compliant with Codes & Standards
- Productive (Flexible)
- **Energy Efficient**
- Sustainable

ANSI/AIHA –Z9.5 - 2012 American National Standard for Laboratory Ventilation

- Newly Revised & Published September 2012
- Minimum Requirements and Best Practices
 - Protect People
 - Ensure Dependable Operation
 - Operate Energy Efficient Labs
- Recommendations & Specifications for New and Renovated Laboratories
 - Hood Design & Operation
 - Laboratory Design
 - Ventilation System Design
 - Commissioning and Routine Testing
 - Work Practices and Training
 - Preventative Maintenance

The American Society of Safety Engineers

Airflow Specifications for Laboratories Minimum Flow and Range of Modulation Required to Meet the Functional Requirements of the Lab Demand for Ventilation

• Safety

- Hood Exhaust Flow
- Laboratory Pressurization
- Dilution (ACH)

Comfort & Productivity

- Temperature
- Humidity
- Occupancy & Utilization

Demand Based Optimization

Opportunities to Improve Safety and Reduce Energy Modify Systems to Meet Demand

- **Remove or Hibernate Unnecessary Hoods**
- Modify Inefficient Hoods
- Replace & Retrofit Traditional Fume Hoods
- Upgrade CAV & Dysfunctional VAV Controls
- Optimize Temperature & Humidity Controls
- Install Demand Control Ventilation
- Reduce / Reset System Static Pressure
- Optimize Exhaust Fan and AHU Operation
- Implement Energy Recovery

Modify Inefficient Hoods

- Poorly Designed
- Under Utilized or Ineffective
- Typically Operate Continuously
- Large Energy Wasters

Safe, Energy Efficient & Sustainable Lab Buildings
Replace or Upgrade Laboratory Fume Hoods

• Bench-Top

- Traditional Bypass
- Low Velocity / High Performance
- VAV Restricted Bypass
- Distillation
- Floor Mounted (Walk-in)

Upgrade-Retrofit Traditional Fume Hoods

- Renew/Refurbish Inefficient Hoods
- Improve Safety & Containment
- Reduce Flow and Energy Use

Upgrade & Retrofit Fume Hoods

Before

After

Safe & Sustainable Technology

Fume Hood Operating Specifications

Minimum Exhaust Flow for Fume Hoods

Containment

Dilution

Removal

1990s - EPA – 50 cfm / ft of Wh

2004 - NFPA 45

- 25 cfm / sq. ft. ws
- 2010 Defers to ANSI Z9.5

2012 - ANSI Z9.5 (must be appropriate)

- Internal ACH (150 ACH to 375 ACH)
- 150 ACH ~ 10 cfm / sq. ft. ws
- 375 ACH ~ 25 cfm / sq. ft. ws

Caution: Minimum Flow is Hood & System Dependent

Control Bands for Minimum Exhaust Specifications

Fume Hood Control Band Parameters

- Flammability
 - Lower Explosion Limit (LEL)
- Airborne Hazard (LOC)
 - OSHA Global Harmonized Standards

Generation Rate

- Vapor Pressure
- Quantity
- Heat / Energy

Corrosives

- Type & Quantity
- Process/Heat
- Generation Location
- Hood Dilution Factor

Control Band	VAV Flow Reduction
1	Minimum Flow for Containment
2	Investigate Further
3	Maintain Design Flow
4	Operate as CAV (no reduction)

Laboratory Operating Specifications

Laboratory Operating Specifications

Lab Control Band Parameters

- Chemical Hazard Rating
- Chemical Generation Source Location(s)
- Chemical Generation Potential
- Duration of Chemical Generation
- Exposure Control Devices (ECD)
- Housekeeping Lab Practices
- Ventilation Effectiveness (Sweep)

Control Bands for Laboratory Airflow Specifications

- Parameters, Weighting, and Scorecard Adjusted for Research
- Specify ACH & Risks of Recirculating Lab Air
- Evaluate Lab Construction, Pressurization, Need for Monitoring

Survey Score	Control Band	ACH	Recirculation of Lab Air	Lab Pressurization
0-5	1	< 4	Possible	Neutral
6-11	2	4-6	Filtered or DCV	< -0.005" w.g.
12-21	3	6-8	Investigate	< -0.01" w.g.
22-31	4	8-10	No	< -0.05" w.g. Critical w/ Monitor
>31	5	> 10	No	= > -0.05" w.g. Critical w/Anteroom & Monitor

System Operating Specifications

- AHUs and Ex. Fans
- Manifolds
 - Redundancy
 - Emergency Power
- Max and Min Flows
- System Static Pressure
- Duct Transport Velocity
- Exhaust Stack Discharge
- Control Capabilities
 - VAV Diversity
 - VAV Sensitivity

Lab Ventilation Optimization Process (LVOP™)

■ Rapid Energy & Lab Safety Assessment (RELSATM)

- Quick, Low Cost, Low Risk Audit
- Evaluate Safety & Code Compliance
- Identify Performance Improvement Measures (PIMs)
- Prioritize Energy Conservation Measures (ECMs)
- Determine Benefits, Energy Reduction, Cost and Payback

• System Renovation & Upgrade Project

- Engineer & Implement PIMs and ECMs
- Retrofit Laboratory Hoods and Upgrade Systems
- TAB & Commission Systems
- Benchmark Operation

Lab Ventilation Management Plan (LVMP)

- Maintain Safe, Efficient & Effective Operation
- Ensure Compliance Conduct Routine Test and Maintenance
- Protect Return on Energy Investment

Lab Safety & Energy Optimization Projects

LVOP – Roadmap to Safe, Energy Efficient & Sustainable Laboratories

- **RELSA = Rapid Energy & Lab Safety Assessment**
- SOW = Scope of Work
- **PIM = Performance Improvement Measure**
- ECM = Energy Conservation Measures

- TA = Technical Assistance Vendor
- TAB = Test, Adjust and Balance
- **Cx = Commissioning Tests**
- LVMP = Lab Ventilation Management Program

Lab Safety & Energy Assessment (LS&EA)

Facility and Building Evaluation

- Select & Prioritize Best Projects First

• Key Metrics & Weighting Factors

- Size & Space Allocation
- Energy Use & Operating Costs
- State of the Systems
- Energy Reduction Potential

• Lab Profile Report

- Building Classification
- Assessment of Energy Reduction
- Estimated Project Costs & Payback

.ab	Building P	rofiler - Ra	ating Shee	et		D	ECT, Inc.
	Dubling Information	Name					
		Function					
0	Parame	~	Volue Range Law/	Ranges for 1 1- NO Renge 2	aloss and Weight Range 3	Ing Factors	Tange 3 - Tange 7 Htts Tange 7 Htts
•	Building Age	Year Bulk		0 1985-1990	1996-3980	2006-2005 2	865-3052
1	And days line	Buil	ding Energ	y Profile Ir	forma	tion	ELECT Inc
÷	with Channess	Agency					
1	BLJ	Building Name					1
		Building Function					1
•	Lab Spece		Name				Date
,	Number of Fame Hood		Pesition				Reviewer
-		Point of Contact	Telephone No.				
•	Fume Road Density		Email Address				
•	Building Cyanating Co.		Parameter Value				Notes
				Age / Year Bulk			
"	Energy creeks con			0100 Ares - 0.92			4
_	Subjective Ratings			Ventilated Area - V ft2			-
	Building Documentation	1		Laboratory	Notires		-
-				Viterium	τiN		1
12	State of Systems	space Allocation	Critical Control Spects		Sile-12		-
-				Cleanson	Size-A2		-
u	DNBS Safety beam			10.1	τįΝ		1
	including a second		L		514-52		-
1	Chief of Court Racing		Non Lab	Office/Support/Heits	h of Gress		-
15	Alt fore Reduction Public		Meters& Submeters	10N			1
_				Electricity			
	Efficiency Improvement Po		Consumption - 5	Neturei Geo			
_				Steam			
			ļ	Online: Water			_
		Utilities	Total - S	5/6m2			
				Eadricky-X	WH .		4
			Concumption - Units or BTU	Natural Gas-	NO		-
		1		Steen-M	10 10		-
		1		Joined Water -		-	-

Attribute	Lab Building Profile Category							
 State of the Systems Energy Reduction Potential Project LOE & Complexity Return on Investment (Payback) 	Class	Class	Class	Class	Class			
	A	B	C	D	E			

LS&EA Building Profile & Project Prioritization

Profile	Building	Total Annual Utility Cost	% Utility Reduction	Annual Savings \$	Investment to Realize Savings \$	Payback Period
Α	Bldg D	\$1,950,000	24	\$468,000	\$1,404,000	3
B+	Bldg A	\$800,000	16	\$128,000	\$512,000	4
В	Bldg F	\$600,000	21	\$126,000	\$567,000	5
В	Bldg E	\$980,000	16	\$156,800	\$784,000	5
В-	Bldg B	\$450,000	9	\$40,500	\$202,500	5
C-	Bldg C	\$300,000	7	\$21,000	\$189,000	9
	Totals	\$5,080,000	19	\$940,300	\$3,658,500	4

Lab Safety and Energy Optimization Project

Phase 1 – Project Engineering

- Determine Operating Specifications
 - Control Band Hoods & Labs
- Design Upgrades & System Modifications
- Develop TAB & Cx Plans

• Phase 2 – Upgrade/Renovation Project

- Implement Selected PIMs & ECMs
- Verify Performance and Energy Savings

Building Profile and Project Optimization Tasks

	Building Profile										
	Attribute	Building Frome									
Profile	State of the Systems Building Operating Cost Energy Reduction Potential Energy Project Complexity (LOE)	Α	В	С	D	E (New)					
	ROI - Project Payback	< 3	< 5	< 10	> 10	N/A					
	Project	Phase & T	ask								
Planning	RELSA & TA Study	X	x	X	x						
	Minor Engineering	X	X								
	Major Engineering			X	X						
	Component Repair Maintenance	X	X	X	X						
Safety & Energy	Retrofits & Component Upgrades		X	X	X						
Proiect	Component Replacement			X	X						
	New Equipment Installation				X						
	ТАВ	X	X	X	X						
	СХ	X	X	X	X						
	LVMP	X	x	X	x	X					
Sustainability Program	Training	X	X	X	X	X					
Program	Routine T&M Services	X	X	X	x	X					

Demand Based Optimization - Success

Building	Baseline Airflow cfm	Annual Operating Cost \$	Final Airflow cfm	Flow Reduction cfm	% Flow Reduction	Annual Cost Savings \$ @ \$4.50/cfm-yr	GHG Reduction tons/yr
Gov 1 (5 bldgs)	773,000	3,478,500	518,000	255,000	33%	1,147,500	15,300
Gov 2 (1 bldg)	66,000	297,000	37,000	29,000	44%	130,500	1740
Gov 3 (1 bldg)	71,000	319,500	56,000	15,000	21%	67,500	900
Gov 4 (2 bldgs)	144,000	648,000	101,000	43,000	30%	193,500	2580
Gov 5 (1 bldg)	51,000	229,500	35,000	16,000	31%	72,000	960
Gov 6 (1 bldg)	47,000	211,500	33,000	14,000	30%	63,000	840
Biotek 1 (1 bldg)	11,000	49,500	7,000	4,000	36%	18,000	240
Pharma 1 (4 bldgs)	628,000	2,826,000	470,000	158,000	26%	711,000	9,720
Pharma 2 (1 bldg)	168,000	756,000	120,000	48,000	28%	216,000	2880
University 1 (1 bldg)	394,000	1,773,000	332,000	62,000	16%	279,000	3780
University 2 (1 bldg)	180,000	810,000	135,000	45,000	25%	202,500	2760
Summary	2,533,000	\$11,398,500	1,844,000	693,808	29%	\$3,100,500	41,700

Safe Sustainable Energy Use – Protect ROI

517 517 517

Campus Wide Aggregate Energy Reduction

Laboratory Ventilation Management Plan (LVMP)

System Management and Sustainability Plan

- Organization and Responsibilities
- Effective Collaboration/Integration
- SOP's for Testing and Maintenance
- Metrics, Monitoring & BAS Utilization
- Ventilation Design Standards
 - Commissioning Guidelines
- Management of Change
- Personnel Training
- Required By ANSI Z9.5-2012

Safe, Energy Efficient & Sustainable Lab Buildings

Ventilation Maintenance and Test Schedule

Training of Personnel

Lab Personnel
 Facility Maintenance
 Building Operators

Lab Ventilation Optimization Process (LVOP)

- Safe
- Energy Efficient
- Sustainable

Thomas C. Smith

Exposure Control Technologies, Inc. 919-319-4290 www.exposurecontroltechnologies.com tcsmith@labhoodpro.com

LAZARE RESEARCH BUILDING

Laboratory Ventilation Optimization Project

- Reduce air change rates in the high bay laboratories to 4.5 air changes per hour while maintaining a high degree of indoor air quality
 Reduce air change rates in the Animal Holding Areas to 8 air changes per
- 2. Real charge rates in the Animal Holding Areas to 8 air changes per hour while maintaining a high level of indoor air quality
- 3. Reduce fume hood face velocity to 70 fpm while improving hood performance
- 4. Avoid interruptions to ongoing research
- 5. Maintain Pressure Relationships Between Adjacent Spaces
- 6. Implement Laboratory Ventilation Management Plan

National Grid: Fran Boucher Michael Horton **Project Team** John Kibbee Andelman & Lelek: Michael Andelman Alison Farmer

UMass Med:

John Baker Mark Armington Melissa Lucas David MacNeil EH&S Aircuity: Jim Robichaud Chuck McKinney

Exposure Control Technologies: Thomas Smith

Project Milestones

Fall 2009: National Grid Approaches UMass with their "Health and Safety First" approach to Laboratory Energy Projects

Summer 2010: Laboratory Ventilation Optimization Project (LVOP[™]) completed by Exposure Control Technologies

Fall 2010: Energy Conservation Measures (ECM's) evaluated by Andelman & Lelek. Minimum project requirements defined.

Fall 2013: Project Start

Spring 2014: Project Completion

Typical Lab Floor 2 -9

Vivarium Animal Holding Rooms

Elec. Consumption

LVOP Results and ECMs

Results during initial investigation indicated:

- Many labs under positive pressure
- Excess Supply
- Greater than 12 ACH
- Greater than 17% error in flow reported by Terminals to BAS

ECM#1a:	Cleaning of Exhaust Boxes and Returning to Original
	Design Values
ECM#1b:	Install Fume Hood Retrofit Kit
ECM#2:	Demand Controlled Ventilation System – Laboratory
ECM#3:	Demand Controlled Ventilation System – Vivarium

Fume Hood Retrofit

Traditional Fume Hood

109 Fume Hoods

85 5-ft Constant Air Volume Fume Hoods (450 CFM to 315 CFM) 24 6-ft Variable Air Volume Fume Hoods (775 CFM to 545 CFM)
30% Reduction in Exhaust Flow Improved Containment Installation = 2-3 hrs. each.

ĵ.		í Í	Ceiling		Supply	y Box	Origina	I Airflow	New A	irflow		Exha	aust Box	Original	Exhaust	New E	xhaust	Zone
	Zone	Area	Height	Volume	Size	Min	CFM	ACH	CFM	ACH		Size	Min	CFM	ACH	CFM	ACH	Pressure
1	560A,A1,B	792	9	7128	14	335	900	7.6	500	4.2		14	335	1100	9.3	400	3.4	
	560C,D,E,E1	1126	9	10134	19	845	900	5.3	750	4.4		16	440	600	3.6	650	3.8	
	560B1	122	8.5	1037	8	105	550		550			8	105	550		550		
	560C1 (Hood)				10000						315					10.450		
	560D1	122	8.5	1037	8	105	550		550			8	105	550		550		
		11							2350		315					2150		-4 80%
		•••	<u>Λ</u>		rat		COR	nnc	ht c	im	nlv	h			ro			4.0576
	570A, B, B1, C, D	1628	9	14612		845		7.0	1100	4.6	μιγ	10		Vivod	52	1000	4.1	
	570E,F,F1,G,H	1525	9	13725	19	845	1700	7.4	1000	4.4		19	845	1000	4.4	900	3.9	
	5701,J,J1,K,L	1461	9	13149	19	845	1700	7.8	1000	4.6		19	845	1400	6.4	900	4.1	
	570M,N,O,O1,P	1462	9	12158	h19/	rt5r	IGPY	3 8	120	CHO	nc	nb	CITI	1890-	IAr	C ⁰⁰	4.1	
	570Q,R,S,T	1115	9		JWV	8-5	I Com	0.8		JIK	113	NE		LOPL	84	300	4.2	
	570U,U1,V,W,X	1705	9	15345	19	845	1700	6.6	1100	4.5		- 19	845	1400	5.5	1000	3.9	
	570Y,Y1,Z	797	9	7173	14	335	900	7.5	550	4.6		14	335	900	7.5	450	3.8	
	570C1 (Hood)	uth		tc	hno		ora	tia	n o			Dn	σin		rind	Τ		
	570D1 VV	122	UU	1017	UPIS			ιU	650 U	וו ו			SPII		9	550		
	570E1	122	8.5	1037	8	105	550		550			8	105	550		550		
-	5/0G1 (Hood)				C						315					11		
8	570H1	122	nn	C.A	tðt		mn	lica	ntro	nc	Δt	th		här	nπc	650		
Ē	5/011	122	IJU	5 0	ופָנ	VIUS	U PP	IILO	ILTO		U	LII		I GI	ISC	550		
-F	5/UK1	122	8.5	1037	8	105	550		550		245	8	105	550	U	550		
T I	5/ULI (HOOD)	122	0.5	1027	0	105	550		rnal	of Cl	315	Cal		$-h_{2}$	Cofo	+1000		
	570111	122	0.0	1027	0	105	550	-JOU	Igi		lem	lCal	пеан		Sale	LAP		
	57001	122	8.5	1037	0	105	550		550			ő	105	550		550		
	57001 (Hood)	166	0.5	1057	U.S.	105	550		550		315	Ŭ	105	550		550		
	570R1	122	8.5	1037	8	105	550		550		315	8	105	550		550		
	57051	122	8.5	1037	8	105	550		550			8	105	550		550		
	570V1	122	8.5	1037	8	105	550		550			8	105	550		550		
	570W1	122	8.5	1037	8	105	550		550			8	105	550		550		
	570X1 (Hood)										315							
									13250		1575					12450		5.0504
																103-10810-675		-5.85%
	540A,A1,B,C	1120	9	10080	19	845	1100	6.5	850	5.1		19	845	800	4.8	750	4.5	
	540D.E.E1	856	9	7704	14	335	800	6.2	500	3.9		14	335	900	7.0	400	3.1	
	540B1	122	8.5	1037	8	105	550		550			8	105	550		550		
	540C1 (Hood)										315							
	540D1	122	8.5	1037	8	105	550		550			8	105	550		550		
1	100 Million								2450	00	315				1	2250		
																0.		-4.69%
			Total Airf	flow			23700		18050	n				21500		16850		
			Average	ACH				7.3		4.5					6.4		3.9	

Diagnostic and Reporting tools

Project Summary

	Fume Hood Face Velocity Reduction: Fume Hood Air Flow Reduction:	100 to 70 fpm 12,000 CFM
	Laboratory Air Change Rate Reduction: Laboratory Air Flow Reduction:	10.2 to 4.5 64,000 CFM
AA	Vivarium Air Change Rate Reduction: Vivarium Air Flow Reduction:	13.4 to 10.8 5,600 CFM
	Total Project Cost: Annual Savings:	\$1,751,416 \$518,319
AA	NGRID/Nstar Utility Rebates: Payback after rebate:	\$1,049,744 1.4 years

Do your homework!

• Understand your mechanical system capabilities

Understand current lab utilization

Communicate!

- •...with all constituents
- ...before, during & after the project

Follow Thru!

Lab Ventilation Mgmt Plan

Questions?

