

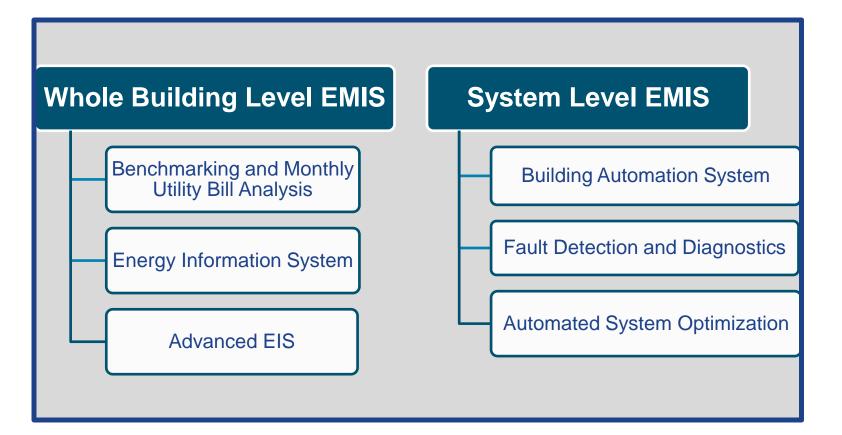
EMIS: Crash Course

Jessica Granderson, Guanjing Lin, Erin Hult Lawrence Berkeley National Laboratory

BBA EMIS Project Team Meeting, December 12, 2013

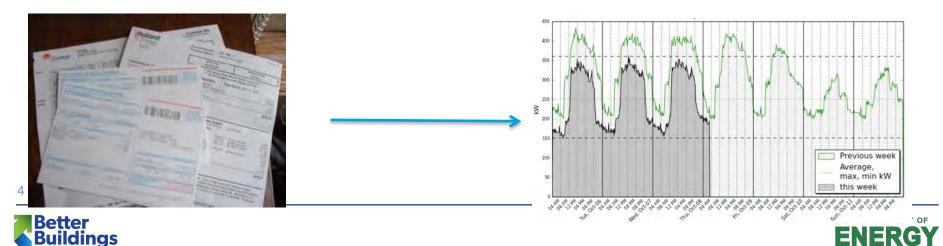
Supported by DOE Building Technologies Office, K. Taddonio, A. Jiron

Crash Course Outline

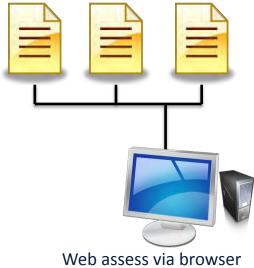

- What is EMIS
- EMIS Family
 - Benchmarking and Monthly Utility Bill Analysis
 - EIS and Advanced EIS
 - Building Automation System
 - FDD and ASO
- Selecting a Tool
- Conclusions

What is EMIS?

Energy Management Information Systems (EMIS)



Motivation


- Energy performance monitoring and reporting has come to the forefront of the national energy dialogue
 - Zero-energy and smart grid initiatives
 - EISA 2007, federal and state labeling and reporting mandates
- Optimal performance requires higher granularity data, more timely analysis than monthly utility bills
- Energy Management and Information Systems (EMIS), broad family of tools that store, analyze, and display energy use or building systems data

Benchmarking and Monthly Utility Bill Analysis

- A tool comparing a building's performance to peer groups or to historical performance, and sometimes validating and managing utility bills.
- Monthly whole-building use, utility bills
- Applications
 - Utility bill reconciliation
 - Energy use and cost tracking
 - Benchmarking against a portfolio or through ENERGY STAR
 - Sustainability reporting (i.e greenhouse gas emission)

Benchmarking and Monthly Utility Bill Analysis

Utility bill analysis software, a screenshot including ENERGY STAR, carbon footprint, cost trend, and usage trend

6

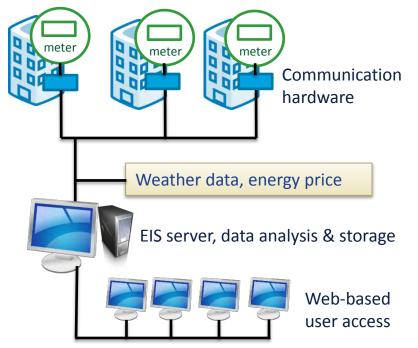
Benchmarking and Monthly Utility Bill Analysis

Examples

- EPA Portfolio manager
- EnergyCAP
- Ecova
- Facility Dude
- Metrix
- NOESIS
- Energy Print
- FirstView

Benefits

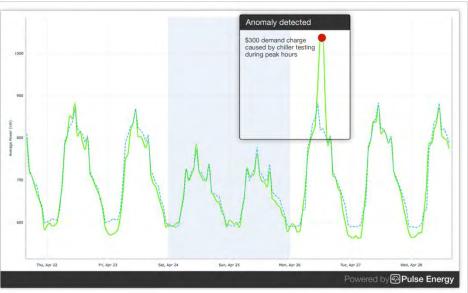
- Provides info to set energy goals and to track progress
- Reveals need for improvement (by internal and/or external comparisons), helps prioritize
- Assists in streamlining bill payment processing
- Energy savings enabled with benchmarking
 - Average annual energy savings of 2.4%¹
- Costs- free or \$



Energy Information System (EIS) and Advanced EIS

- A web-based tool to display and analyze interval wholebuilding and submetered energy data
- EIS applications
 - Data visualization (i.e. energy dashboard)
 - Whole building & submeter level energy tracking & benchmarking
 - Peak load analysis
- Advanced EIS applications
 - Automated interval data analysis with baseline modeling
 - Energy anomaly detection (i.e. scheduling, changes in load profile, excessive energy use)
 - Project savings verification
 - Cumulative sum

Hourly to 15-min interval meter data



Energy Information System (EIS) and Advanced EIS

EIS, a bar graph tracking energy consumption pattern

Advanced EIS, a time series graph identifying excessive energy use with a predictive energy model

Energy Information System (EIS) and Advanced EIS

Examples

- Obvius building manager online
- Lucid Building Dashboard

ဟ

Ē

S

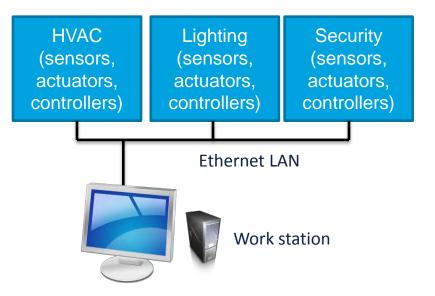
Ш

Advanced

- Noveda Energy Flow Monitoring
- NorthWrite Energy Worksite
- Pulse Energy
- IBIS
- EnerNOC EfficiencySmart
- Schneider Energy Operation
- JCI Panoptix
- EFT Energy Manager
- eSight Enterprise

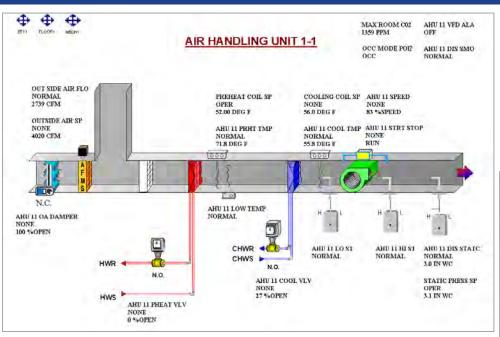
Benefits

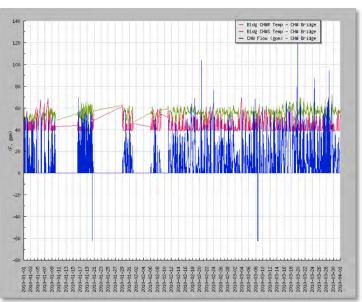
- Provide granular energy consumption history and patterns
- Adjust electrical demand in real time
- Make alarms when energy exceeds the expectation
- Take weather and occupancy changes into account
- Energy savings enabled with EIS¹
 - Median annual portfolio savings of 8%
 - Range in annual portfolio savings of 0-33%
 - Costs-**\$\$** to **\$\$\$**
 - Up-front and ongoing software costs
 - Median 5-yr software cost for a portfolio
 - \$3600/bldg, \$0.06/sf, \$1800 /pt¹



Building Automation System (BAS)

- A tool to operate building HVAC, and possibly lighting and security systems, using e.g., controllers, sensors, and actuators
- Interval system or component data
- Applications
 - Maintain indoor temperature, humidity, lighting conditions
 - Troubleshoot system-level performance
 - Modern BAS can be programed to tracking key system performance metrics¹
 - Cooling plant efficiency (kW/ton)
 - Heating plant efficiency (%)
 - Outside air ventilation (cfm/person)


15-minute and **less interval system** or **component** data (i.e. air temp.& pressure, lighting levels, VFD speed)



Building Automation System (BAS)

BAS, a screenshot of an AHU with system parameters

BAS, a trend graph showing chilled water supply and return temperatures, and flow, 5-min samples

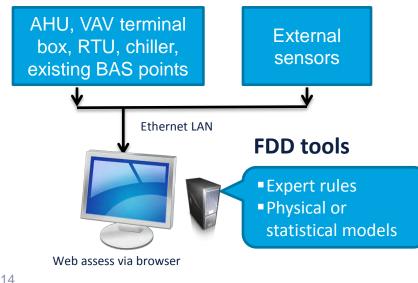
Building Automation System (BAS)

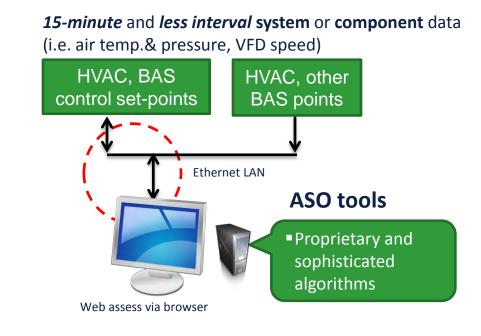
Examples

- Siemens Apogee
- Johnson Control Metasys
- Honeywell
 Enterprise
 Buildings
 Integrator™
- Emerson DeltaV
- Schneider
 Electric TAC Vista
- Novar Opus EMS
- Tridium Niagara
- Automated Logic
 WebControl

Benefits

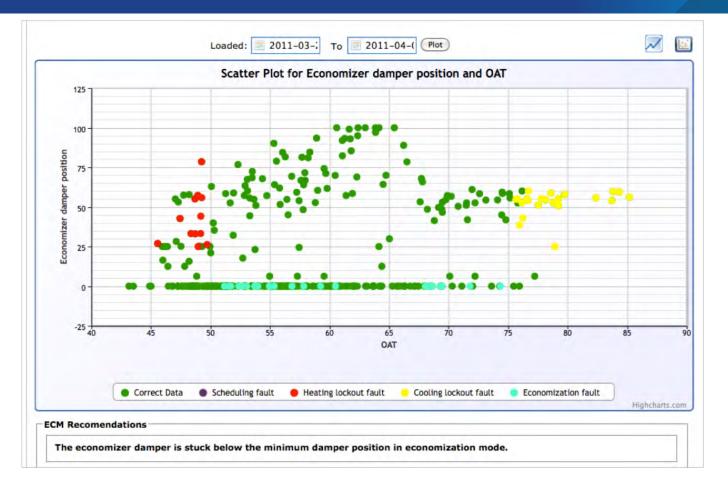
- Improves occupant comfort
- Monitors system operational parameters (e.g., setpts, schedules)
- Enables implementing efficient control strategies
- Energy savings enabled
 - 10-15% result from installation of a new BAS¹
- Costs
 - New BAS \$\$\$\$, average \$4.00/sf, \$1100 / pt¹
 - Data integration, calibration to perform system tracking with existing BAS - \$-\$\$²




Fault Detection and Diagnosis (FDD) & Automated System Optimization (ASO)

- Interval system or component data
- FDD a tool to automatically identify HVAC system or equipment level faults, and sometimes isolate root causes

15-minute and **less interval system** or **component** data (i.e. air temp.& pressure, airflow rate, VFD speed)


 ASO – a tool to dynamically change HVAC BAS settings to optimize energy use and/or comfort

Fault Detection and Diagnosis (FDD)

Rule-based Automated FDD software, a screenshot showing identified economizer faults, cooling/heating lockout

15

Fault Detection and Diagnosis (FDD)

Examples

- Cimetrics InfoMetrics
- EZENICS
- Sky Foundry Sky Spark
- ClimaCheck
- Sensus MI
- FDSI Insight
- EffTec EffTrack

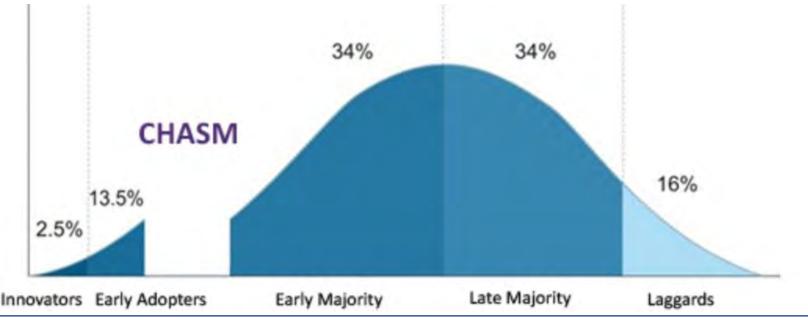
Benefits

- Automatically detects problems at the system or equipment level with less analysis time
- Prioritize faults based on fault frequency or estimated fault cost

Energy savings potential

Faults can increase HVAC energy use by up to 30%¹, or whole building energy use by 2-11%²

Costs-**\$\$\$**


- Hardware investment and labor to set-up & tuning
- High configuration costs to custom FDD rules for non-standard HVAC system

State of the Tools

- Benchmarking and utility analysis, mature technologies, under used
- BAS, mature technologies, common in larger buildings
- EIS, rapidly evolving, emerging technology, early stages of adoption
- FDD, still maturing, increasingly offered in advanced EIS
- ASO, still maturing, limited number of offerings on the market

Selecting a Tool: Summary of EMIS Tools

	EMIS tools	Data scope	Key uses	Costs	Energy Savings
Whole building	Benchmarking& utility bill analysis	Monthly utility bills	Peer-to peer comparisonUtility bill analysis	Free -\$	2.4% (median) (whole building, enabled savings)
Whole building & system	EIS & Advanced EIS	Hourly or 15- min meter data	 Energy dashboard/kiosk Benchmarking Energy anomalies alert Demand response Auto M&V 	\$\$-\$\$\$	8% (median), 0- 33% (range) (whole building, enabled savings)
System	BAS	15-min or less interval sub- system data	 Building system control Manually troubleshooting by investigating trends 	\$\$\$\$	10-15% (whole building)
	FDD		Auto system or component fault notificationFault causes identification	\$\$\$	2-11% (whole building, potential savings)
	ASO		 Optimal HVAC settings prediction 	\$\$\$	-

18

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define activities to meet goals

Identify required sensing, metering

Select a tool(s)

Set quantifiable performance goals

- Goal examples
 - Lower energy use by 20% over the next 3 years
 - Achieve a building EUI of 70 kBtu/sqft/year
 - Achieve an EPA ENERGY STAR rating of 75
- Benchmarking can help in setting goals
 - Comparing EUI to past performance, similar buildings with data from U.S. CBECS data or through online tools (e.g. ENERGY STAR, EnergyIQ)
 - Comparing energy cost per square feet either to historical performance or to regional peers

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define activities to meet goals

Identify required sensing, metering

Select a tool(s)

Define roles and responsibilities

- Who will do what
 - Energy and sustainability managers
 - Operations and maintenance staff
 - Third-party service contractor
- How often
- What is the accountability and reporting structure
- What are the central vs on-site duties

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define activities to meet goals

Identify required sensing, metering

Select a tool(s)

Understand facilities and personnel

- Building characteristics
 - Building size & energy spend, small vs large
 - Number of sites, a few vs large portfolio
 - Geographic diversity, close vs dispersed, aggregated into campuses
- System conditions
 - Meters, sensors & other monitoring infrastructure
 - Operations, high level controls, schedules
- Data resources
 - Utility bills vs interval data, centralized BAS trend logs
- Staff knowledge base

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define activities to meet goals

Identify required sensing, metering

Select a tool(s)

 Define specific monitoring & analysis activities, e.g.,

- Track monthly performance, refer worst for further investigation
- Conduct monthly review meetings for accountability
- Detect energy anomalies and respond daily
- Conduct continuous Cx of HVAC and lighting
- Document and verify project-specific savings, progress toward the goal annually

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define activities to meet goals

Identify required sensing, metering

Select a tool(s)

Consider sensing and metering issues

- Think about the degree to which energy use/operational parameters are captured
 - Whole-building
 - System level
 - Panel/sub-panel level
 - Circuit level
 - Component level
- Types of measuring needed for planned activities
 - Electricity, natural gas, steam, water meters
 - Temperature, pressure, and flow sensors
- Identify supplemental measuring needed

Set organizational goals

Establish roles & responsibilities

Understand organizational conditions

Define management activities

Identify required sensing, metering

Select a tool(s)

Select a tool or set of tools

- Investigate market offerings & existing technology review resources
- Look for examples from your industry with similar scope and objectives
- Develop a specification of key technology requirements

Conclusions

- EMIS include
 - Whole building energy focus tools: benchmarking, EIS, and advanced EIS
 - System focus tools: BAS, FDD, and ASO
- Benchmarking and utility bill analysis are low-cost tools to track and analyze monthly energy data
- EIS and advanced EIS are moderate to expensive tools to track and analyze interval energy data (hourly or less)
- BAS, FDD, and ASO are moderate to expensively priced tools to track and analyze system and component operational parameters
- In selecting a tool, consider
 - Organizational goals, roles and responsibilities, current facility characteristics, specific energy management activities, and measurement needs

THANK YOU

eere.energy.gov/betterbuildingsalliance/EMIS

Jessica Granderson JGranderson@lbl.gov 510.486.6792 Guanjing Lin GJLin@lbl.gov 510.486.5979

26