Laboratory Ventilation Flow Rates at Cornell: Rethinking the Tradition

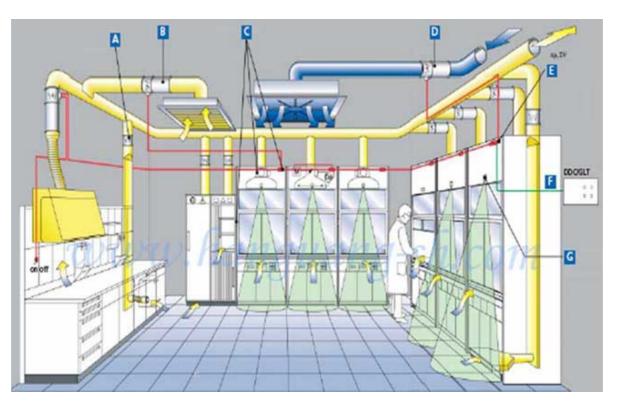
Ralph Stuart, CIH Chemical Hygiene Officer Dept. of Environmental Health and Safety rstuart@cornell.edu November, 2012

Cornell University Environmental Health and Safety

- 1. Laboratory Ventilation as part of the Laboratory Safety System
- 2. Cornell's lab air reduction practices
- 3. Moving forward: the Laboratory Ventilation Management Plan

What is a Lab?

- Laboratories are workplaces where people do unusual things with hazardous materials
- Generic strategies are used to protect the workers and their science:
 - 1. Hazard replacement or downsizing
 - 2. Facility design and operation
 - 3. Worker training and oversight
 - 4. Personal protective equipment and emergency response plans



 This flexible approach to safety maximizes the kinds of work the facility can host

Today's Lab Ventilation System

- Fume hoods
- General Laboratory Ventilation
- Chemical Storage Cabinets

General Lab Ventilation Specifications for Safety Purposes

• Air Quality: use 100% outside air to avoid recirculating contaminants originating in the lab

• Air Quantity:

- The late 20th century approach: 10-12 ACH 24/7 in all labs
- The 21st century approach: ACH depends on what's happening in the room and how effective the ventilation is
- Ventilation requirements can be driven by:
 - Control of chemicals and other hazards
 - Local exhaust requirements
 - Temperature (solar and plug load)

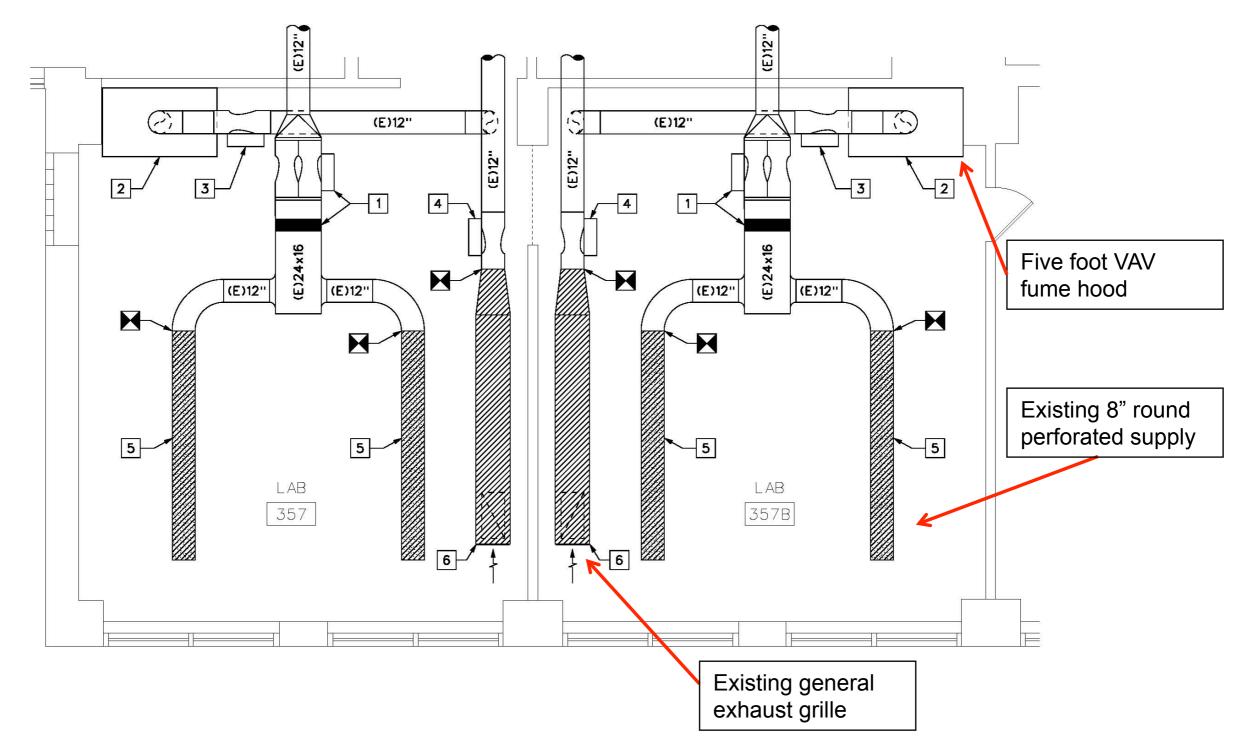
Cornell University Facilities Services

Energy Conservation Initiative Program

- Campus wide multi-phase plan (2002 2017)
- Goal is to reduce year-2000 energy use 20%
- Program includes energy conservation focused maintenance, studies, and projects – data driven
- Program supported by NYSERDA rebates

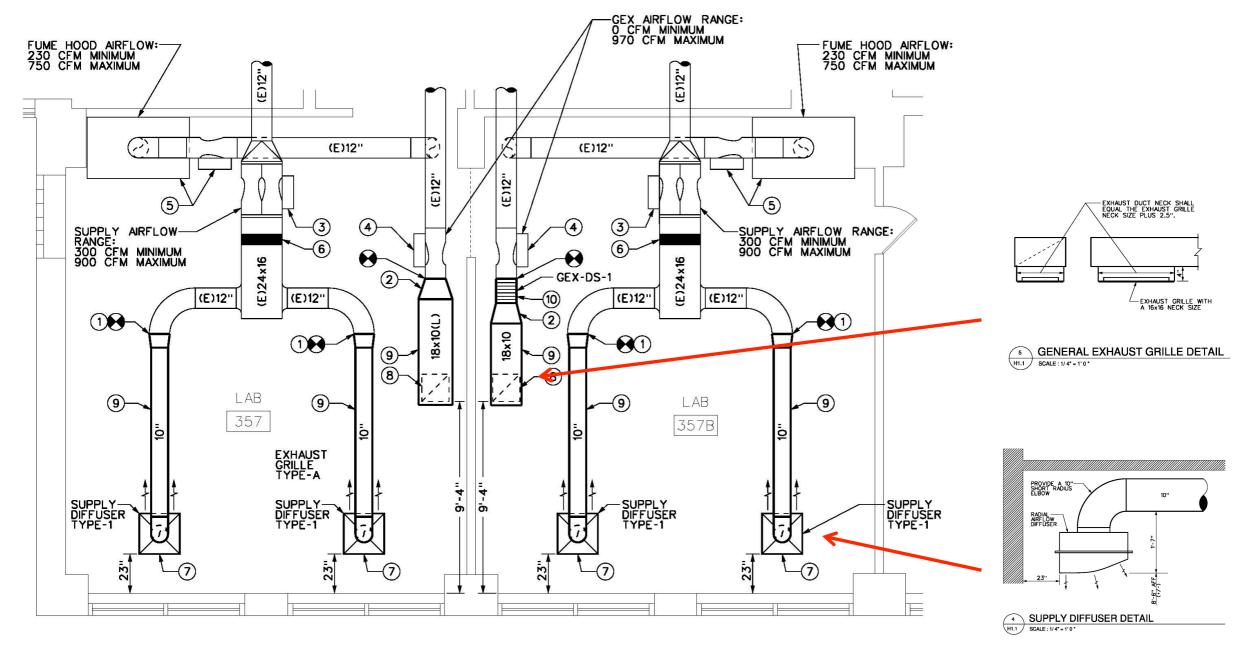
Key energy conservation opportunities in laboratories

- Re-commissioning control systems to reduce outside air use
- Use occupancy sensors to control occupied / unoccupied air flows and lighting
- Relax temperatures during unoccupied time to reduce reheat requirements
- Retrofit environmental chambers



Reducing General Air Flow using CFD modelling

- A full 3D CFD model was built in Fluent software for 3 buildings (one 1950's, one 1980's, one 1990's renovation)
- Results showed that in the 1980's building (Bioteach), 8/4 was not clearing spills effectively
- Model results were verified by qualitative smoke tests



Biotechnology existing ductwork

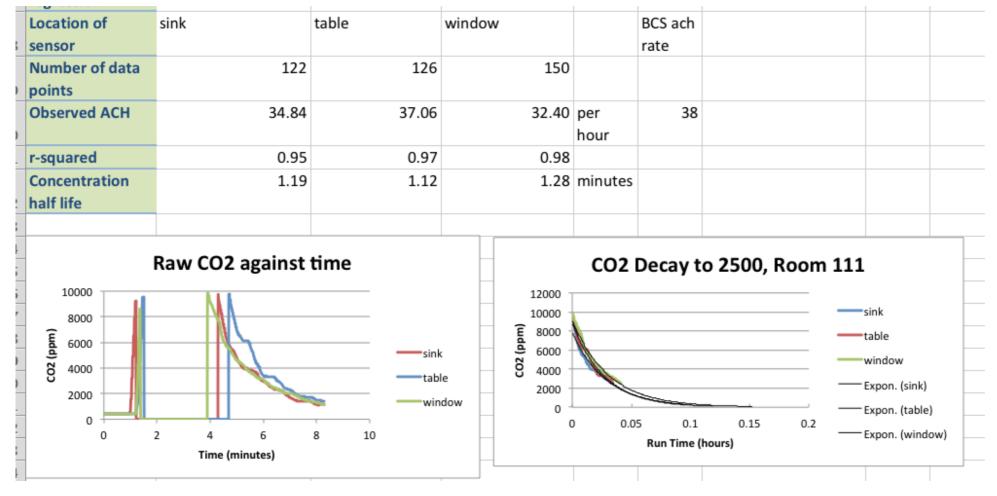
Biotechnology new ductwork design

Biotechnology building results

- CFD modeling found that, after redesign, spills were cleared well enough at 6/3 to avoid OSHA PELs
- 90 fume hood zones = ~ \$180,000 renovation cost
- Savings ~ \$1200/lab each year, less than a 2 year simple payback!
- Building operating costs went from \$1.2 million/year to \$900,000/year

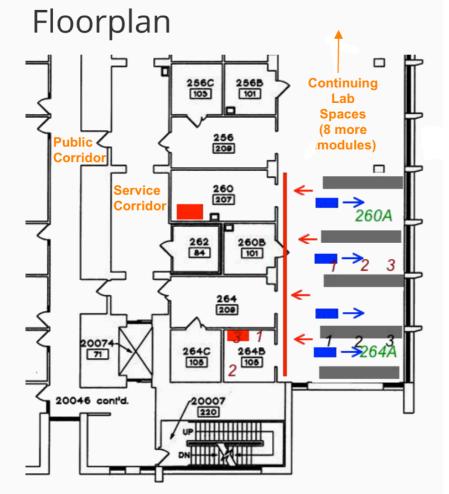
Lessons Learned (2008)

- Cornell's historic building stock means that the general ventilation decision is not as simple as "just do it"
- Ventilation effectiveness in a lab must be evaluated on a room basis
- CFD is a cost effective tool to evaluate current and proposed designs


The Next Phase: Control Banding Labs

- We start with a standard minimum of 8 ACH when the lab is unoccupied and 4 ACH when unoccupied to control chemical concentrations (temperature and exhaust can override these minimums)
- We review the current chemistry to identify labs where
 6 ACH and 3 ACH can be expected to control chemical hazards.
- There are special cases outside these generic categories (e.g. animal areas, BSL rooms and machine shops (once through air at around 2 ACH)).
- Over the last 1.5 years, we have visited about 600 laboratories at Cornell and the majority can run at 6/3, *if fumes hoods are used and ventilation is effective*

Evaluating the Ventilation Effectiveness Caveat


 We use fire extinguishers to release CO2 and measure chemical concentration decay patterns within a laboratory

Another Ventilation Reduction Opportunity

- Weill Hall: large, open lab concept building occupied in 2008
- Has been running at 8/4, as designed, with some labs in "Vacant mode"
- Can this building run at 6/3?

Lab Layout Details

Hood alcove 264B

264A aisle and 264B

View into 260

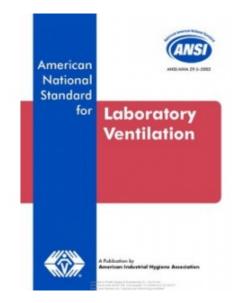
Decay Measurement Results

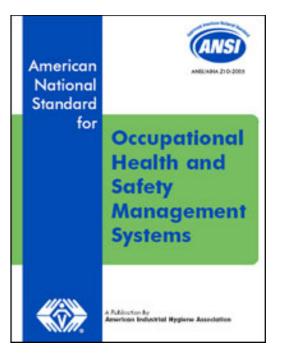
Run number	Source room(s)	260 ach		260 middle	260 window	260 average	264 ach	264 aisle		264 window	264 average
1	264 and 260	8	10.1	7.2	-	8.6	8	10.2	8.0	8.9	9.0
2	264	6	53.2	32.2	11.3	32.2	6	17.9	16.3	14.9	16.4
3	260	6	9.2	11.0	13.2	11.1	6	4.4	8.3	10.4	7.7
4	264	8	8.3	10.4	11.6	10.1	6	10.3	9.8	10.9	10.3
		r-squared									
1			0.98	0.99				0.93	0.97	0.95	
2			1.00	1.00	0.96			0.95	0.98	0.93	
3			0.81	0.93	0.99			0.67	0.83	0.97	
4			0.82	0.83	0.98			0.76	0.82	0.98	
		half life									
		(minutes)									
1		5.2	4.1	5.8		4.8	5.2	4.1	5.2	4.7	4.6
2		6.9	0.8	1.3	3.7	1.3	6.9	2.3	2.5	2.8	2.5
3		6.9	4.5	3.8	3.1	3.7	6.9	9.4	5.0	4.0	5.4
4		5.2	5.0	4.0	3.6	4.1	6.9	4.0	4.3	3.8	4.0

Room	Pressure	Supply	Exhaust	ach
264A	neutral	866	864	8
260A	negative 100	672	772	6
260a	negative 100	918	1010	8
264A	neutral	626	629	6

ceiling tiles are 1 by 4 feet diffuser to window distance is about 16 feet wall to window distacnce is about 20 feet 260 and 264 are 41 feet wide collectively

Conclusions

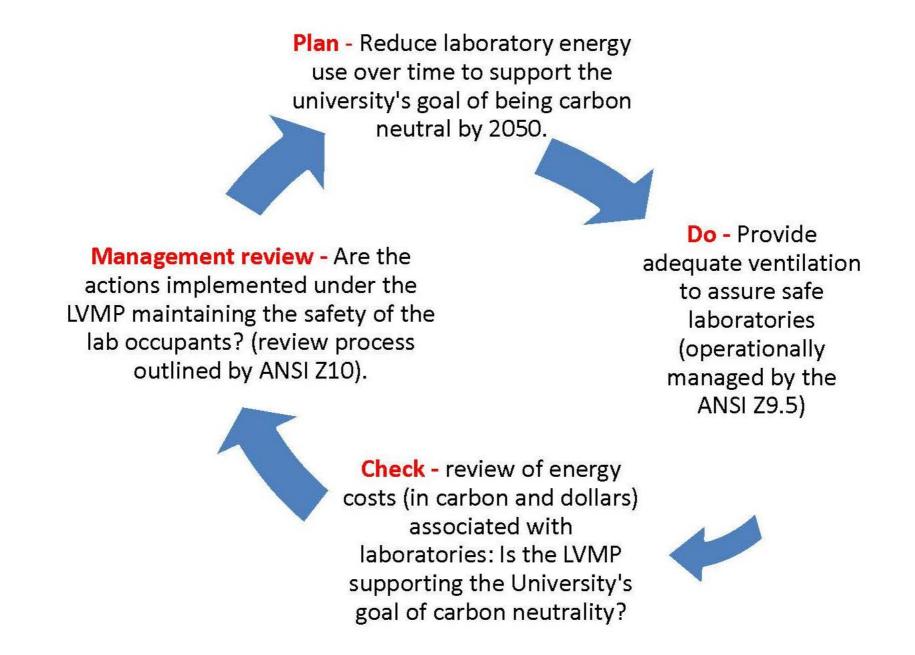

- The open lab concept increases ventilation effectiveness by providing more room for chemicals to diffuse
- There are specific areas of concerns at the edges of the room – windows, doorways, etc.
- It is important that odoriferous chemicals are used in fume hoods
- This building can run at 6/3 safely


Operational Results

- Effectiveness testing began in February, 2012 and was completed in May
- Recommendations were delivered to building management and occupants in August, 2012
- Implementation hurdles are being addressed
- Switch over of second floor on pilot base is underway.
- Savings expected to be \$300,000/year and 100 homes of carbon/year

Maintaining the Lab Vent System

- Managing within Systems
 - Systems include multiple priorities associated with a variety of stakeholders
 - Systems can be simple (a change results in a predictable outcome) or complex (a change results in a variety of outcomes, some predictable)
 - Managing within a system requires flexibility and practice
- Laboratory ventilation managers face competing priorities (science, safety and sustainability)
- Fortunately, we have ANSI Z9.5 and Z10 to help guide the system



Cornell University Environmental Health and Safety

The LVMP Management System

Coming to a web site near you soon!

The LVMP: Lab Ventilation for Science, Safety and Sustainability

	Stakeholder Group	Primary Phase	Specific Activities
	Facility designers	Plan	Specify laboratory equipment and operating parameters
Continuous Improvement Plan Do	Laboratory users	Do	Use of hazardous materials in a way that manages those hazards
Act Check The LVMP	Facility operators and management	Check	Continuously commission lab ventilation systems; certify hood face velocity; track HVAC energy use in labs
	EHS staff and academic management	Act	Review laboratory ventilation practices for opportunities to improve safety and sustainability

Tracking Improvement: Identifying Indicators and Setting SMART Goals

Stakeholder Group	Indicators	Specific Activities
Facility designers and academic management	Average ACH specified	Reduce specified ventilation rates by greening chemistry and improving hoods purchased
Laboratory users	Hood housekeeping scores	Maintain good housekeeping
Facilities management	Total energy used to maintain lab ventilation parameters	Track HVAC energy use in labs
EHS staff and academic management	Number of events related to ventilation rates	Track hazmat responses and IAQ concerns related to ventilation rate

 "Occupancy" ventilation rate (20 cfm/person) where there is no chemical driver – for example, electron microscopy and other instrument heavy labs

Summary: Key Laboratory Ventilation Conservation Opportunities

- Identify hoods that can be hibernated
- In exhaust-driven labs, reduce face velocity on hoods that can maintain containment at lower flowrates, either through VAV or low flow hoods
- Set default general lab ventilation ACH to 6 when chemical processes allow